Cargando…
Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model
The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolutio...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030822/ https://www.ncbi.nlm.nih.gov/pubmed/35453488 http://dx.doi.org/10.3390/biomedicines10040738 |
_version_ | 1784692236831686656 |
---|---|
author | Holzgreve, Adrien Pötter, Dennis Brendel, Matthias Orth, Michael Weidner, Lorraine Gold, Lukas Kirchner, Maximilian A. Bartos, Laura M. Unterrainer, Lena M. Unterrainer, Marcus Steiger, Katja von Baumgarten, Louisa Niyazi, Maximilian Belka, Claus Bartenstein, Peter Riemenschneider, Markus J. Lauber, Kirsten Albert, Nathalie L. |
author_facet | Holzgreve, Adrien Pötter, Dennis Brendel, Matthias Orth, Michael Weidner, Lorraine Gold, Lukas Kirchner, Maximilian A. Bartos, Laura M. Unterrainer, Lena M. Unterrainer, Marcus Steiger, Katja von Baumgarten, Louisa Niyazi, Maximilian Belka, Claus Bartenstein, Peter Riemenschneider, Markus J. Lauber, Kirsten Albert, Nathalie L. |
author_sort | Holzgreve, Adrien |
collection | PubMed |
description | The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [(18)F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [(18)F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [(18)F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBR(max) +27% compared to sham mice, p = 0.001). In GBM mice, [(18)F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBR(max) +16% compared to day 4, p = 0.011. [(18)F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [(18)F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [(18)F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [(18)F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections. |
format | Online Article Text |
id | pubmed-9030822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90308222022-04-23 Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model Holzgreve, Adrien Pötter, Dennis Brendel, Matthias Orth, Michael Weidner, Lorraine Gold, Lukas Kirchner, Maximilian A. Bartos, Laura M. Unterrainer, Lena M. Unterrainer, Marcus Steiger, Katja von Baumgarten, Louisa Niyazi, Maximilian Belka, Claus Bartenstein, Peter Riemenschneider, Markus J. Lauber, Kirsten Albert, Nathalie L. Biomedicines Article The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [(18)F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [(18)F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [(18)F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBR(max) +27% compared to sham mice, p = 0.001). In GBM mice, [(18)F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBR(max) +16% compared to day 4, p = 0.011. [(18)F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [(18)F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [(18)F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [(18)F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections. MDPI 2022-03-22 /pmc/articles/PMC9030822/ /pubmed/35453488 http://dx.doi.org/10.3390/biomedicines10040738 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Holzgreve, Adrien Pötter, Dennis Brendel, Matthias Orth, Michael Weidner, Lorraine Gold, Lukas Kirchner, Maximilian A. Bartos, Laura M. Unterrainer, Lena M. Unterrainer, Marcus Steiger, Katja von Baumgarten, Louisa Niyazi, Maximilian Belka, Claus Bartenstein, Peter Riemenschneider, Markus J. Lauber, Kirsten Albert, Nathalie L. Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title | Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title_full | Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title_fullStr | Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title_full_unstemmed | Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title_short | Longitudinal [(18)F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model |
title_sort | longitudinal [(18)f]ge-180 pet imaging facilitates in vivo monitoring of tspo expression in the gl261 glioblastoma mouse model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030822/ https://www.ncbi.nlm.nih.gov/pubmed/35453488 http://dx.doi.org/10.3390/biomedicines10040738 |
work_keys_str_mv | AT holzgreveadrien longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT potterdennis longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT brendelmatthias longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT orthmichael longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT weidnerlorraine longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT goldlukas longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT kirchnermaximiliana longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT bartoslauram longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT unterrainerlenam longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT unterrainermarcus longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT steigerkatja longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT vonbaumgartenlouisa longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT niyazimaximilian longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT belkaclaus longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT bartensteinpeter longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT riemenschneidermarkusj longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT lauberkirsten longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel AT albertnathaliel longitudinal18fge180petimagingfacilitatesinvivomonitoringoftspoexpressioninthegl261glioblastomamousemodel |