Cargando…
Utility Metrics for Evaluating Synthetic Health Data Generation Methods: Validation Study
BACKGROUND: A regular task by developers and users of synthetic data generation (SDG) methods is to evaluate and compare the utility of these methods. Multiple utility metrics have been proposed and used to evaluate synthetic data. However, they have not been validated in general or for comparing SD...
Autores principales: | El Emam, Khaled, Mosquera, Lucy, Fang, Xi, El-Hussuna, Alaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030990/ https://www.ncbi.nlm.nih.gov/pubmed/35389366 http://dx.doi.org/10.2196/35734 |
Ejemplares similares
-
Validating a membership disclosure metric for synthetic health data
por: El Emam, Khaled, et al.
Publicado: (2022) -
Evaluating the utility of synthetic COVID-19 case data
por: El Emam, Khaled, et al.
Publicado: (2021) -
Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model Development and Validation
por: El Emam, Khaled, et al.
Publicado: (2020) -
Can synthetic data be a proxy for real clinical trial data? A validation study
por: Azizi, Zahra, et al.
Publicado: (2021) -
A method for generating synthetic longitudinal health data
por: Mosquera, Lucy, et al.
Publicado: (2023)