Cargando…
Relative Entropy of Correct Proximal Policy Optimization Algorithms with Modified Penalty Factor in Complex Environment
In the field of reinforcement learning, we propose a Correct Proximal Policy Optimization (CPPO) algorithm based on the modified penalty factor β and relative entropy in order to solve the robustness and stationarity of traditional algorithms. Firstly, In the process of reinforcement learning, this...
Autores principales: | Chen, Weimin, Wong, Kelvin Kian Loong, Long, Sifan, Sun, Zhili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031020/ https://www.ncbi.nlm.nih.gov/pubmed/35455103 http://dx.doi.org/10.3390/e24040440 |
Ejemplares similares
-
A penalty-based algorithm proposal for engineering optimization problems
por: Oztas, Gulin Zeynep, et al.
Publicado: (2022) -
A Geometrical Perspective for the Bargaining Problem
por: Wong, Kelvin Kian Loong
Publicado: (2010) -
An Inexact Penalty Decomposition Method for Sparse Optimization
por: Dong, Zhengshan, et al.
Publicado: (2021) -
The Effects of Modifying the Distance of the Penalty Shot in Water Polo
por: Argudo, Francisco Manuel, et al.
Publicado: (2016) -
Density-Based Penalty Parameter Optimization on C-SVM
por: Liu, Yun, et al.
Publicado: (2014)