Cargando…
Control of hydrogen release during borohydride electrooxidation with porous carbon materials
Due to their highly tunable electrical and structural properties, carbon materials are widely used in fuel cells. This study reviews the latest modifications carried out in order to improve the electrochemical properties of carbon-based anodes in Direct Borohydride Fuel Cell (DBFC). However, in this...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031118/ https://www.ncbi.nlm.nih.gov/pubmed/35481206 http://dx.doi.org/10.1039/d1ra01444g |
_version_ | 1784692310395584512 |
---|---|
author | Graś, Małgorzata Lota, Grzegorz |
author_facet | Graś, Małgorzata Lota, Grzegorz |
author_sort | Graś, Małgorzata |
collection | PubMed |
description | Due to their highly tunable electrical and structural properties, carbon materials are widely used in fuel cells. This study reviews the latest modifications carried out in order to improve the electrochemical properties of carbon-based anodes in Direct Borohydride Fuel Cell (DBFC). However, in this type of fuel cell, various types of carbon (e.g. carbon black, activated carbons, carbon nanotubes, graphene and heteroatom-doped carbons and MOF-derived carbon materials) can provide not only catalyst support, but also hydrogen storage due to the extremely complex process of borohydride electrooxidation. Accurate control of porosity and carbon morphology is therefore necessary for high fuel cell efficiency. Finally, some prospects for the future development of carbon materials for DBFC design are presented. It should be emphasized, that the storage of hydrogen in solid form is a possible breakthrough for the future use of hydrogen as an ecological fuel, which is why scientific research in this topic is so important. |
format | Online Article Text |
id | pubmed-9031118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90311182022-04-26 Control of hydrogen release during borohydride electrooxidation with porous carbon materials Graś, Małgorzata Lota, Grzegorz RSC Adv Chemistry Due to their highly tunable electrical and structural properties, carbon materials are widely used in fuel cells. This study reviews the latest modifications carried out in order to improve the electrochemical properties of carbon-based anodes in Direct Borohydride Fuel Cell (DBFC). However, in this type of fuel cell, various types of carbon (e.g. carbon black, activated carbons, carbon nanotubes, graphene and heteroatom-doped carbons and MOF-derived carbon materials) can provide not only catalyst support, but also hydrogen storage due to the extremely complex process of borohydride electrooxidation. Accurate control of porosity and carbon morphology is therefore necessary for high fuel cell efficiency. Finally, some prospects for the future development of carbon materials for DBFC design are presented. It should be emphasized, that the storage of hydrogen in solid form is a possible breakthrough for the future use of hydrogen as an ecological fuel, which is why scientific research in this topic is so important. The Royal Society of Chemistry 2021-04-27 /pmc/articles/PMC9031118/ /pubmed/35481206 http://dx.doi.org/10.1039/d1ra01444g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Graś, Małgorzata Lota, Grzegorz Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title | Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title_full | Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title_fullStr | Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title_full_unstemmed | Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title_short | Control of hydrogen release during borohydride electrooxidation with porous carbon materials |
title_sort | control of hydrogen release during borohydride electrooxidation with porous carbon materials |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031118/ https://www.ncbi.nlm.nih.gov/pubmed/35481206 http://dx.doi.org/10.1039/d1ra01444g |
work_keys_str_mv | AT grasmałgorzata controlofhydrogenreleaseduringborohydrideelectrooxidationwithporouscarbonmaterials AT lotagrzegorz controlofhydrogenreleaseduringborohydrideelectrooxidationwithporouscarbonmaterials |