Cargando…

Progress in Assays of HMGB1 Levels in Human Plasma—The Potential Prognostic Value in COVID-19

Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of p...

Descripción completa

Detalles Bibliográficos
Autores principales: Štros, Michal, Polanská, Eva Volfová, Hlaváčová, Tereza, Skládal, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031208/
https://www.ncbi.nlm.nih.gov/pubmed/35454134
http://dx.doi.org/10.3390/biom12040544
Descripción
Sumario:Extracellular HMGB1 protein is known to induce inflammatory responses leading to an inflammatory storm. The outbreak of the Severe Acute Respiratory Syndrome COVID-19 due to the SARS-CoV-2 virus has resulted in a huge health concern worldwide. Recent data revealed that plasma/serum HMGB1 levels of patients suffering from inflammation-mediated disorders—such as COVID-19, cancer, and autoimmune disorders—correlate positively with disease severity and vice versa. A late release of HMGB1 in sepsis suggests the existence of a wide therapeutic window for treating sepsis. Rapid and accurate methods for the detection of HMGB1 levels in plasma/serum are, therefore, of great importance for monitoring the occurrence, treatment success, and survival prediction of patients with inflammation-mediated diseases. In this review, we briefly explain the role of HMGB1 in the cell, and particularly the involvement of extracellular HMGB1 (released from the cells) in inflammation-mediated diseases, with an emphasis on COVID-19. The current assays to measure HMGB1 levels in human plasma—Western blotting, ELISA, EMSA, and a new approach based on electrochemical immunosensors, including some of our preliminary results—are presented and thoroughly discussed.