Cargando…

Global Screening and Functional Identification of Major HSPs Involved in PVY Infection in Potato

HSP40 (also known as DnaJ), HSP70, and HSP90 are major heat shock protein (HSP) families that play critical roles in plant growth and development and stress adaption. Recently, several members of the three HSP families were reported to be widely involved in the plant host-virus interactions. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kun, Chen, Ruhao, Tu, Zheng, Nie, Xianzhou, Song, Botao, He, Changzheng, Xie, Conghua, Nie, Bihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031240/
https://www.ncbi.nlm.nih.gov/pubmed/35456372
http://dx.doi.org/10.3390/genes13040566
Descripción
Sumario:HSP40 (also known as DnaJ), HSP70, and HSP90 are major heat shock protein (HSP) families that play critical roles in plant growth and development and stress adaption. Recently, several members of the three HSP families were reported to be widely involved in the plant host-virus interactions. However, their global expression profiles and core members recruited by viruses are largely unknown. In this study, a total of 89 StDnaJs were identified from a genome-wide survey, and their classification, phylogenetic relationships, chromosomal locations, and gene duplication events were further analyzed. Together with 20 StHSP70s and 7 StHSP90s previously identified in the potato genome, the global expression patterns of the members in 3 HSP families were investigated in 2 potato cultivars during Potato virus Y (PVY) infection using RNA-seq data. Of them, 16 genes (including 8 StDnaJs, 6 StHSP70s, and 2 StHSP90s) were significantly up- or downregulated. Further analysis using qRT-PCR demonstrated that 7 of the 16 genes (StDnaJ06, StDnaJ17, StDnaJ21, StDnaJ63, StHSP70-6, StHSP70-19, and StHSP90.5) were remarkably upregulated in the potato cultivar ‘Eshu 3’ after PVY infection, implying their potential roles in the potato-PVY compatible interaction. Subsequent virus-induced gene silencing (VIGS) assays showed that silencing of the homologous genes of StDnaJ17, StDnaJ21, StHSP70-6, and StHSP90.5 in Nicotiana. benthamiana plants dramatically reduced the accumulation of PVY, which indicated the four genes may function as susceptibility factors in PVY infection. This study provides candidate genes for exploring the mechanism of potato-PVY compatible interaction and benefits breeding work aiming to produce new cultivars with the ability to grow healthily under PVY infection.