Cargando…

Label-Free Differentiation of Cancer and Non-Cancer Cells Based on Machine-Learning-Algorithm-Assisted Fast Raman Imaging

This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral dat...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Qing, Yang, Wen, Luo, Weiquan, Wilhelm, Stefan, Weng, Binbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031282/
https://www.ncbi.nlm.nih.gov/pubmed/35448310
http://dx.doi.org/10.3390/bios12040250
Descripción
Sumario:This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral data processing approach based on machine learning methods proved capable of presenting the cell structure and distinguishing cancer cells from non-cancer muscle cells without compromising full-spectrum information. This study discovered that biomolecular information–nucleic acids, proteins, and lipids—from cells could be retrieved efficiently from low-quality hyperspectral Raman datasets and then employed for cell line differentiation.