Cargando…
Label-Free Differentiation of Cancer and Non-Cancer Cells Based on Machine-Learning-Algorithm-Assisted Fast Raman Imaging
This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral dat...
Autores principales: | He, Qing, Yang, Wen, Luo, Weiquan, Wilhelm, Stefan, Weng, Binbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031282/ https://www.ncbi.nlm.nih.gov/pubmed/35448310 http://dx.doi.org/10.3390/bios12040250 |
Ejemplares similares
-
Rapid discrimination of Shigella spp. and Escherichia coli via label-free surface enhanced Raman spectroscopy coupled with machine learning algorithms
por: Liu, Wei, et al.
Publicado: (2023) -
Label-Free Surface Enhanced Raman Spectroscopy for Cancer Detection
por: Avci, Ertug, et al.
Publicado: (2022) -
Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy
por: Ferrara, Maria Antonietta, et al.
Publicado: (2019) -
Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning
por: Thomsen, Benjamin Lundquist, et al.
Publicado: (2022) -
Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes
por: Heraud, Philip, et al.
Publicado: (2017)