Cargando…

A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction

In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is wide...

Descripción completa

Detalles Bibliográficos
Autores principales: Brochet, Thibaud, Lapuyade-Lahorgue, Jérôme, Huat, Alexandre, Thureau, Sébastien, Pasquier, David, Gardin, Isabelle, Modzelewski, Romain, Gibon, David, Thariat, Juliette, Grégoire, Vincent, Vera, Pierre, Ruan, Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031340/
https://www.ncbi.nlm.nih.gov/pubmed/35455101
http://dx.doi.org/10.3390/e24040436
_version_ 1784692366401077248
author Brochet, Thibaud
Lapuyade-Lahorgue, Jérôme
Huat, Alexandre
Thureau, Sébastien
Pasquier, David
Gardin, Isabelle
Modzelewski, Romain
Gibon, David
Thariat, Juliette
Grégoire, Vincent
Vera, Pierre
Ruan, Su
author_facet Brochet, Thibaud
Lapuyade-Lahorgue, Jérôme
Huat, Alexandre
Thureau, Sébastien
Pasquier, David
Gardin, Isabelle
Modzelewski, Romain
Gibon, David
Thariat, Juliette
Grégoire, Vincent
Vera, Pierre
Ruan, Su
author_sort Brochet, Thibaud
collection PubMed
description In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat cross-entropy is a parameterized cross-entropy with the parameter [Formula: see text] . Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy for [Formula: see text] . The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers. The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of prediction accuracy with some values of [Formula: see text] .
format Online
Article
Text
id pubmed-9031340
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90313402022-04-23 A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction Brochet, Thibaud Lapuyade-Lahorgue, Jérôme Huat, Alexandre Thureau, Sébastien Pasquier, David Gardin, Isabelle Modzelewski, Romain Gibon, David Thariat, Juliette Grégoire, Vincent Vera, Pierre Ruan, Su Entropy (Basel) Article In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat cross-entropy is a parameterized cross-entropy with the parameter [Formula: see text] . Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy for [Formula: see text] . The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers. The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of prediction accuracy with some values of [Formula: see text] . MDPI 2022-03-22 /pmc/articles/PMC9031340/ /pubmed/35455101 http://dx.doi.org/10.3390/e24040436 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brochet, Thibaud
Lapuyade-Lahorgue, Jérôme
Huat, Alexandre
Thureau, Sébastien
Pasquier, David
Gardin, Isabelle
Modzelewski, Romain
Gibon, David
Thariat, Juliette
Grégoire, Vincent
Vera, Pierre
Ruan, Su
A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title_full A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title_fullStr A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title_full_unstemmed A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title_short A Quantitative Comparison between Shannon and Tsallis–Havrda–Charvat Entropies Applied to Cancer Outcome Prediction
title_sort quantitative comparison between shannon and tsallis–havrda–charvat entropies applied to cancer outcome prediction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031340/
https://www.ncbi.nlm.nih.gov/pubmed/35455101
http://dx.doi.org/10.3390/e24040436
work_keys_str_mv AT brochetthibaud aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT lapuyadelahorguejerome aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT huatalexandre aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT thureausebastien aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT pasquierdavid aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gardinisabelle aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT modzelewskiromain aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gibondavid aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT thariatjuliette aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gregoirevincent aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT verapierre aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT ruansu aquantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT brochetthibaud quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT lapuyadelahorguejerome quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT huatalexandre quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT thureausebastien quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT pasquierdavid quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gardinisabelle quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT modzelewskiromain quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gibondavid quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT thariatjuliette quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT gregoirevincent quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT verapierre quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction
AT ruansu quantitativecomparisonbetweenshannonandtsallishavrdacharvatentropiesappliedtocanceroutcomeprediction