Cargando…
Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal
Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data transmission and real-time processing exist when sampling UAV communication signals using the RF detectio...
Autores principales: | Mo, Yongguang, Huang, Jianjun, Qian, Gongbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031341/ https://www.ncbi.nlm.nih.gov/pubmed/35459057 http://dx.doi.org/10.3390/s22083072 |
Ejemplares similares
-
RF-Based UAV Detection and Identification Using Hierarchical Learning Approach
por: Nemer, Ibrahim, et al.
Publicado: (2021) -
RF Signal-Based UAV Detection and Mode Classification: A Joint Feature Engineering Generator and Multi-Channel Deep Neural Network Approach
por: Yang, Shubo, et al.
Publicado: (2021) -
Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and Segmentation
por: Ghali, Rafik, et al.
Publicado: (2022) -
Joint Fusion and Detection via Deep Learning in UAV-Borne Multispectral Sensing of Scatterable Landmine †
por: Qiu, Zhongze, et al.
Publicado: (2023) -
Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM
por: Hua, Jing, et al.
Publicado: (2022)