Cargando…

Phylogeny and Metabolic Potential of the Candidate Phylum SAR324

SIMPLE SUMMARY: SAR324, newly proposed as its own candidate phylum, is a diverse and globally abundant bacterial group living in a wide range of environments, from deep-sea hydrothermal vents and brine pools to the epipelagic regions of the global oceans and terrestrial aquifers. The different SAR32...

Descripción completa

Detalles Bibliográficos
Autores principales: Malfertheiner, Lukas, Martínez-Pérez, Clara, Zhao, Zihao, Herndl, Gerhard J., Baltar, Federico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031357/
https://www.ncbi.nlm.nih.gov/pubmed/35453798
http://dx.doi.org/10.3390/biology11040599
_version_ 1784692370132959232
author Malfertheiner, Lukas
Martínez-Pérez, Clara
Zhao, Zihao
Herndl, Gerhard J.
Baltar, Federico
author_facet Malfertheiner, Lukas
Martínez-Pérez, Clara
Zhao, Zihao
Herndl, Gerhard J.
Baltar, Federico
author_sort Malfertheiner, Lukas
collection PubMed
description SIMPLE SUMMARY: SAR324, newly proposed as its own candidate phylum, is a diverse and globally abundant bacterial group living in a wide range of environments, from deep-sea hydrothermal vents and brine pools to the epipelagic regions of the global oceans and terrestrial aquifers. The different SAR324 clades harbor a diverse array of genes and pathways well adapted to their respective environments. This metabolic flexibility explains the ubiquitous presence and the importance of SAR324 in global biogeochemical cycles. ABSTRACT: The bacterial SAR324 cluster is ubiquitous and abundant in the ocean, especially around hydrothermal vents and in the deep sea, where it can account for up to 30% of the whole bacterial community. According to a new taxonomy generated using multiple universal protein-coding genes (instead of the previously used 16S rRNA single gene marker), the former Deltaproteobacteria cluster SAR324 has been classified since 2018 as its own phylum. Yet, very little is known about its phylogeny and metabolic potential. We downloaded all publicly available SAR324 genomes (65) from all natural environments and reconstructed 18 new genomes using publicly available oceanic metagenomic data and unpublished data from the waters underneath the Ross Ice Shelf. We calculated a global SAR324 phylogenetic tree and identified six clusters (namely 1A, 1B, 2A, 2B, 2C and 2D) within this clade. Genome annotation and metatranscriptome read mapping showed that SAR324 clades possess a flexible array of genes suited for survival in various environments. Clades 2A and 2C are mostly present in the surface mesopelagic layers of global oceans, while clade 2D dominates in deeper regions. Our results show that SAR324 has a very versatile and broad metabolic potential, including many heterotrophic, but also autotrophic pathways. While one surface water associated clade (2A) seems to use proteorhodopsin to gain energy from solar radiation, some deep-sea genomes from clade 2D contain the complete Calvin–Benson–Bassham cycle gene repertoire to fix carbon. This, in addition to a variety of other genes and pathways for both oxic (e.g., dimethylsulfoniopropionate degradation) and anoxic (e.g., dissimilatory sulfate reduction, anaerobic benzoate degradation) conditions, can help explain the ubiquitous presence of SAR324 in aquatic habitats.
format Online
Article
Text
id pubmed-9031357
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90313572022-04-23 Phylogeny and Metabolic Potential of the Candidate Phylum SAR324 Malfertheiner, Lukas Martínez-Pérez, Clara Zhao, Zihao Herndl, Gerhard J. Baltar, Federico Biology (Basel) Article SIMPLE SUMMARY: SAR324, newly proposed as its own candidate phylum, is a diverse and globally abundant bacterial group living in a wide range of environments, from deep-sea hydrothermal vents and brine pools to the epipelagic regions of the global oceans and terrestrial aquifers. The different SAR324 clades harbor a diverse array of genes and pathways well adapted to their respective environments. This metabolic flexibility explains the ubiquitous presence and the importance of SAR324 in global biogeochemical cycles. ABSTRACT: The bacterial SAR324 cluster is ubiquitous and abundant in the ocean, especially around hydrothermal vents and in the deep sea, where it can account for up to 30% of the whole bacterial community. According to a new taxonomy generated using multiple universal protein-coding genes (instead of the previously used 16S rRNA single gene marker), the former Deltaproteobacteria cluster SAR324 has been classified since 2018 as its own phylum. Yet, very little is known about its phylogeny and metabolic potential. We downloaded all publicly available SAR324 genomes (65) from all natural environments and reconstructed 18 new genomes using publicly available oceanic metagenomic data and unpublished data from the waters underneath the Ross Ice Shelf. We calculated a global SAR324 phylogenetic tree and identified six clusters (namely 1A, 1B, 2A, 2B, 2C and 2D) within this clade. Genome annotation and metatranscriptome read mapping showed that SAR324 clades possess a flexible array of genes suited for survival in various environments. Clades 2A and 2C are mostly present in the surface mesopelagic layers of global oceans, while clade 2D dominates in deeper regions. Our results show that SAR324 has a very versatile and broad metabolic potential, including many heterotrophic, but also autotrophic pathways. While one surface water associated clade (2A) seems to use proteorhodopsin to gain energy from solar radiation, some deep-sea genomes from clade 2D contain the complete Calvin–Benson–Bassham cycle gene repertoire to fix carbon. This, in addition to a variety of other genes and pathways for both oxic (e.g., dimethylsulfoniopropionate degradation) and anoxic (e.g., dissimilatory sulfate reduction, anaerobic benzoate degradation) conditions, can help explain the ubiquitous presence of SAR324 in aquatic habitats. MDPI 2022-04-14 /pmc/articles/PMC9031357/ /pubmed/35453798 http://dx.doi.org/10.3390/biology11040599 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Malfertheiner, Lukas
Martínez-Pérez, Clara
Zhao, Zihao
Herndl, Gerhard J.
Baltar, Federico
Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title_full Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title_fullStr Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title_full_unstemmed Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title_short Phylogeny and Metabolic Potential of the Candidate Phylum SAR324
title_sort phylogeny and metabolic potential of the candidate phylum sar324
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031357/
https://www.ncbi.nlm.nih.gov/pubmed/35453798
http://dx.doi.org/10.3390/biology11040599
work_keys_str_mv AT malfertheinerlukas phylogenyandmetabolicpotentialofthecandidatephylumsar324
AT martinezperezclara phylogenyandmetabolicpotentialofthecandidatephylumsar324
AT zhaozihao phylogenyandmetabolicpotentialofthecandidatephylumsar324
AT herndlgerhardj phylogenyandmetabolicpotentialofthecandidatephylumsar324
AT baltarfederico phylogenyandmetabolicpotentialofthecandidatephylumsar324