Cargando…
AGs-Unet: Building Extraction Model for High Resolution Remote Sensing Images Based on Attention Gates U Network
Building contour extraction from high-resolution remote sensing images is a basic task for the reasonable planning of regional construction. Recently, building segmentation methods based on the U-Net network have become popular as they largely improve the segmentation accuracy by applying ‘skip conn...
Autores principales: | Yu, Mingyang, Chen, Xiaoxian, Zhang, Wenzhuo, Liu, Yaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031445/ https://www.ncbi.nlm.nih.gov/pubmed/35458917 http://dx.doi.org/10.3390/s22082932 |
Ejemplares similares
-
C-UNet: Complement UNet for Remote Sensing Road Extraction
por: Hou, Yuewu, et al.
Publicado: (2021) -
SAA-UNet: Spatial Attention and Attention Gate UNet for COVID-19 Pneumonia Segmentation from Computed Tomography
por: Alshomrani, Shroog, et al.
Publicado: (2023) -
Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network
por: Zhou, Dengji, et al.
Publicado: (2020) -
Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography
por: Katakis, Sofoklis, et al.
Publicado: (2022) -
Research on the Extraction of Hazard Sources along High-Speed Railways from High-Resolution Remote Sensing Images Based on TE-ResUNet
por: Pan, Xuran, et al.
Publicado: (2022)