Cargando…
Dipolar Noise in Fluorinated Molecular Wires
We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031467/ https://www.ncbi.nlm.nih.gov/pubmed/35458080 http://dx.doi.org/10.3390/nano12081371 |
_version_ | 1784692396871647232 |
---|---|
author | Jung, Mingyu Shekhar, Shashank Cho, Duckhyung Yang, Myungjae Park, Jeehye Hong, Seunghun |
author_facet | Jung, Mingyu Shekhar, Shashank Cho, Duckhyung Yang, Myungjae Park, Jeehye Hong, Seunghun |
author_sort | Jung, Mingyu |
collection | PubMed |
description | We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates, and a conducting probe in contact-mode atomic force microscopy was utilized to map currents and noises through the probe on the molecular patterns. The maps were analyzed to extract the characteristic parameters of dipolar noises in SAMs, and the results were compared with those of hydrogenated molecular patterns without dipole moments. At rather low bias conditions, the fluorinated molecular junctions exhibited a tunneling conduction and a resistance value comparable to that of the hydrogenated molecules with a six-times-longer length, which was attributed to stronger dipoles formation in fluorinated molecules. Interestingly, conductance (G) in different regions of fluorinated molecular patterns exhibited a strong correlation with a noise power spectral density of S(I)/I(2) like S(I)/I(2) ∝ G(−2), which can be explained by enhanced barrier fluctuations produced by the dipoles of fluorinated molecules. Furthermore, we observed that the noise power spectral density of fluorinated molecules showed an anomalous frequency (f) dependence like S(I)/I(2) ∝ 1/f(1.7), possibly due to the slowing down of the tunneling of carriers from increased barrier fluctuations. In rather high bias conditions, conductions in both hydrogenated and fluorinated molecules showed a transition from tunneling to thermionic charge transports. Our results provide important insights into the effects of dipoles on mesoscopic transport and resistance-fluctuation in molecules and could have a significant impact on the fundamental understanding and applications in this area. |
format | Online Article Text |
id | pubmed-9031467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90314672022-04-23 Dipolar Noise in Fluorinated Molecular Wires Jung, Mingyu Shekhar, Shashank Cho, Duckhyung Yang, Myungjae Park, Jeehye Hong, Seunghun Nanomaterials (Basel) Article We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates, and a conducting probe in contact-mode atomic force microscopy was utilized to map currents and noises through the probe on the molecular patterns. The maps were analyzed to extract the characteristic parameters of dipolar noises in SAMs, and the results were compared with those of hydrogenated molecular patterns without dipole moments. At rather low bias conditions, the fluorinated molecular junctions exhibited a tunneling conduction and a resistance value comparable to that of the hydrogenated molecules with a six-times-longer length, which was attributed to stronger dipoles formation in fluorinated molecules. Interestingly, conductance (G) in different regions of fluorinated molecular patterns exhibited a strong correlation with a noise power spectral density of S(I)/I(2) like S(I)/I(2) ∝ G(−2), which can be explained by enhanced barrier fluctuations produced by the dipoles of fluorinated molecules. Furthermore, we observed that the noise power spectral density of fluorinated molecules showed an anomalous frequency (f) dependence like S(I)/I(2) ∝ 1/f(1.7), possibly due to the slowing down of the tunneling of carriers from increased barrier fluctuations. In rather high bias conditions, conductions in both hydrogenated and fluorinated molecules showed a transition from tunneling to thermionic charge transports. Our results provide important insights into the effects of dipoles on mesoscopic transport and resistance-fluctuation in molecules and could have a significant impact on the fundamental understanding and applications in this area. MDPI 2022-04-16 /pmc/articles/PMC9031467/ /pubmed/35458080 http://dx.doi.org/10.3390/nano12081371 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jung, Mingyu Shekhar, Shashank Cho, Duckhyung Yang, Myungjae Park, Jeehye Hong, Seunghun Dipolar Noise in Fluorinated Molecular Wires |
title | Dipolar Noise in Fluorinated Molecular Wires |
title_full | Dipolar Noise in Fluorinated Molecular Wires |
title_fullStr | Dipolar Noise in Fluorinated Molecular Wires |
title_full_unstemmed | Dipolar Noise in Fluorinated Molecular Wires |
title_short | Dipolar Noise in Fluorinated Molecular Wires |
title_sort | dipolar noise in fluorinated molecular wires |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031467/ https://www.ncbi.nlm.nih.gov/pubmed/35458080 http://dx.doi.org/10.3390/nano12081371 |
work_keys_str_mv | AT jungmingyu dipolarnoiseinfluorinatedmolecularwires AT shekharshashank dipolarnoiseinfluorinatedmolecularwires AT choduckhyung dipolarnoiseinfluorinatedmolecularwires AT yangmyungjae dipolarnoiseinfluorinatedmolecularwires AT parkjeehye dipolarnoiseinfluorinatedmolecularwires AT hongseunghun dipolarnoiseinfluorinatedmolecularwires |