Cargando…
Biofilm Growth on Simulated Fracture Fixation Plates Using a Customized CDC Biofilm Reactor for a Sheep Model of Biofilm-Related Infection
Most animal models of infection utilize planktonic bacteria as initial inocula. However, this may not accurately mimic scenarios where bacteria in the biofilm phenotype contaminate a site at the point of injury. We developed a modified CDC biofilm reactor in which biofilms can be grown on the surfac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031587/ https://www.ncbi.nlm.nih.gov/pubmed/35456808 http://dx.doi.org/10.3390/microorganisms10040759 |
Sumario: | Most animal models of infection utilize planktonic bacteria as initial inocula. However, this may not accurately mimic scenarios where bacteria in the biofilm phenotype contaminate a site at the point of injury. We developed a modified CDC biofilm reactor in which biofilms can be grown on the surface of simulated fracture fixation plates. Multiple reactor runs were performed and demonstrated that monomicrobial biofilms of a clinical strain of methicillin-resistant Staphylococcus aureus, S. aureus ATCC 6538, and Pseudomonas aeruginosa ATCC 27853 consistently developed on fixation plates. We also identified a method by which to successfully grow polymicrobial biofilms of S. aureus ATCC 6538 and P. aeruginosa ATCC 27853 on fixation plates. This customized reactor can be used to grow biofilms on simulated fracture fixation plates that can be inoculated in animal models of biofilm implant-related infection that, for example, mimic open fracture scenarios. The reactor provides a method for growing biofilms that can be used as initial inocula and potentially improve the testing and development of antibiofilm technologies. |
---|