Cargando…

Synthesis of Novel Conjugated Linoleic Acid (CLA)-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for the Delivery of Paclitaxel with Enhanced In Vitro Anti-Proliferative Activity on A549 Lung Cancer Cells

The application of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as a nanomedicine for Non-Small Cell Lung Carcinoma (NSCLC) can provide effective delivery of anticancer drugs with minimal side-effects. SPIONs have the flexibility to be modified to achieve enhanced oading of hydrophobic antica...

Descripción completa

Detalles Bibliográficos
Autores principales: Ngema, Lindokuhle M., Adeyemi, Samson A., Marimuthu, Thashree, Ubanako, Philemon, Wamwangi, Daniel, Choonara, Yahya E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031641/
https://www.ncbi.nlm.nih.gov/pubmed/35456663
http://dx.doi.org/10.3390/pharmaceutics14040829
Descripción
Sumario:The application of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as a nanomedicine for Non-Small Cell Lung Carcinoma (NSCLC) can provide effective delivery of anticancer drugs with minimal side-effects. SPIONs have the flexibility to be modified to achieve enhanced oading of hydrophobic anticancer drugs such as paclitaxel (PTX). The purpose of this study was to synthesize novel trans-10, cis-12 conjugated linoleic acid (CLA)-coated SPIONs loaded with PTX to enhance the anti-proliferative activity of PTX. CLA-coated PTX-SPIONs with a particle size and zeta potential of 96.5 ± 0.6 nm and −27.3 ± 1.9 mV, respectively, were synthesized. The superparamagnetism of the CLA-coated PTX-SPIONs was confirmed, with saturation magnetization of 60 emu/g and 29 Oe coercivity. CLA-coated PTX-SPIONs had a drug loading efficiency of 98.5% and demonstrated sustained site-specific in vitro release of PTX over 24 h (i.e., 94% at pH 6.8 mimicking the tumor microenvironment). Enhanced anti-proliferative activity was also observed with the CLA-coated PTX-SPIONs against a lung adenocarcinoma (A549) cell line after 72 h, with a recorded cell viability of 17.1%. The CLA-coated PTX-SPIONs demonstrated enhanced suppression of A549 cell proliferation compared to pristine PTX, thus suggesting potential application of the nanomedicine as an effective site-specific delivery system for enhanced therapeutic activity in NSCLC therapy.