Cargando…
Conventional and Microfluidic Methods for the Detection of Nucleic Acid of SARS-CoV-2
Nucleic acid testing (NAT) played a crucial role in containing the spread of SARS-CoV-2 during the epidemic. The gold standard technique, the quantitative real-time polymerase chain reaction (qRT-PCR) technique, is currently used by the government and medical boards to detect SARS-CoV-2. Due to the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031662/ https://www.ncbi.nlm.nih.gov/pubmed/35457940 http://dx.doi.org/10.3390/mi13040636 |
Sumario: | Nucleic acid testing (NAT) played a crucial role in containing the spread of SARS-CoV-2 during the epidemic. The gold standard technique, the quantitative real-time polymerase chain reaction (qRT-PCR) technique, is currently used by the government and medical boards to detect SARS-CoV-2. Due to the limitations of this technology, it is not capable of meeting the needs of large-scale rapid detection. To solve this problem, many new techniques for detecting nucleic acids of SARS-CoV-2 have been reported. Therefore, a review that systematically and comprehensively introduces and compares various detection technologies is needed. In this paper, we not only review the traditional NAT but also provide an overview of microfluidic-based NAT technologies and summarize and discuss the characteristics and development prospects of these techniques. |
---|