Cargando…

The Effect of Discharge Mode on the Distribution of Myocardial Pulsed Electric Field—A Simulation Study for Pulsed Field Ablation of Atrial Fibrillation

Background: At present, the effects of discharge modes of multielectrode catheters on the distribution of pulsed electric fields have not been completely clarified. Therefore, the control of the distribution of the pulsed electric field by selecting the discharge mode remains one of the key technica...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Xingkai, Zhang, Hao, Zang, Lianru, Yan, Shengjie, Wu, Xiaomei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031694/
https://www.ncbi.nlm.nih.gov/pubmed/35448071
http://dx.doi.org/10.3390/jcdd9040095
Descripción
Sumario:Background: At present, the effects of discharge modes of multielectrode catheters on the distribution of pulsed electric fields have not been completely clarified. Therefore, the control of the distribution of the pulsed electric field by selecting the discharge mode remains one of the key technical problems to be solved. Methods: We constructed a model including myocardium, blood, and a flower catheter. Subsequently, by setting different positive and ground electrodes, we simulated the electric field distribution in the myocardium of four discharge modes (A, B, C, and D) before and after the catheter rotation and analyzed their mechanisms. Results: Modes B, C, and D formed a continuous circumferential ablation lesion without the rotation of the catheter, with depths of 1.6 mm, 2.7 mm, and 0.7 mm, respectively. After the catheter rotation, the four modes could form a continuous circumferential ablation lesion with widths of 10.8 mm, 10.6 mm, 11.8 mm, and 11.5 mm, respectively, and depths of 5.2 mm, 2.7 mm, 4.7 mm, and 4.0 mm, respectively. Conclusions: The discharge mode directly affects the electric field distribution in the myocardium. Our results can help improve PFA procedures and provide enlightenment for the design of the discharge mode with multielectrode catheters.