Cargando…

Revisiting the Synthesis of Functionally Substituted 1,4-Dihydrobenzo[e][1,2,4]triazines

A series of novel 1,4-dihydrobenzo[1,2,4][e]triazines bearing an acetyl or ester moiety as a functional group at the C(3) atom of the 1,2,4-triazine ring were synthesized. The synthetic protocol is based on an oxidative cyclization of functionally substituted amidrazones in the presence of DBU and P...

Descripción completa

Detalles Bibliográficos
Autores principales: Epishina, Margarita A., Kulikov, Alexander S., Fershtat, Leonid L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031768/
https://www.ncbi.nlm.nih.gov/pubmed/35458773
http://dx.doi.org/10.3390/molecules27082575
Descripción
Sumario:A series of novel 1,4-dihydrobenzo[1,2,4][e]triazines bearing an acetyl or ester moiety as a functional group at the C(3) atom of the 1,2,4-triazine ring were synthesized. The synthetic protocol is based on an oxidative cyclization of functionally substituted amidrazones in the presence of DBU and Pd/C. It was found that the developed approach is suitable for the preparation of 1,4-dihydrobenzo[e][1,2,4]triazines, but the corresponding Blatter radicals were isolated only in few cases. In addition, a previously unknown dihydrobenzo[e][1,2,4]triazolo[3,4-c][1,2,4]triazine tricyclic open-shell derivative was prepared. Studies of thermal behavior of the synthesized 1,4-dihydrobenzo[1,2,4][e]triazines revealed their high thermal stability (up to 240–250 °C), which enables their application potential as components of functional organic materials.