Cargando…
Robust Spike-Based Continual Meta-Learning Improved by Restricted Minimum Error Entropy Criterion
The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learni...
Autores principales: | Yang, Shuangming, Tan, Jiangtong, Chen, Badong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031894/ https://www.ncbi.nlm.nih.gov/pubmed/35455118 http://dx.doi.org/10.3390/e24040455 |
Ejemplares similares
-
Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning
por: Yang, Shuangming, et al.
Publicado: (2022) -
Optimization of Condition Monitoring Decision Making by the Criterion of Minimum Entropy
por: Raza, Ahmed, et al.
Publicado: (2019) -
Minimum Error Entropy Classification
por: Marques de Sá, Joaquim P, et al.
Publicado: (2013) -
Semi-Supervised Minimum Error Entropy Principle with Distributed Method
por: Wang, Baobin, et al.
Publicado: (2018) -
Quantum Discord, Thermal Discord, and Entropy Generation in the Minimum Error Discrimination Strategy
por: Jiménez, Omar, et al.
Publicado: (2019)