Cargando…
The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy
The entropy generation analysis of adiabatic combustion systems was performed to quantify the exergy losses which are mainly the exergy destroyed during combustion inside the chamber and in the exhaust gases. The purpose of the present work was therefore: (a) to extend the exergy destruction analysi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031898/ https://www.ncbi.nlm.nih.gov/pubmed/35455227 http://dx.doi.org/10.3390/e24040564 |
_version_ | 1784692506194083840 |
---|---|
author | Agrebi, Senda Dreßler, Louis Nishad, Kaushal |
author_facet | Agrebi, Senda Dreßler, Louis Nishad, Kaushal |
author_sort | Agrebi, Senda |
collection | PubMed |
description | The entropy generation analysis of adiabatic combustion systems was performed to quantify the exergy losses which are mainly the exergy destroyed during combustion inside the chamber and in the exhaust gases. The purpose of the present work was therefore: (a) to extend the exergy destruction analysis by including the exhaust gas exergy while applying the hybrid filtered Eulerian stochastic field (ESF) method coupled with the FGM chemistry tabulation strategy; (b) to introduce a novel method for evaluating the exergy content of exhaust gases; and (c) to highlight a link between exhaust gas exergy and combustion emissions. In this work, the adiabatic Sandia flames E and F were chosen as application combustion systems. First, the numerical results of the flow and scalar fields were validated by comparison with the experimental data. The under-utilization of eight stochastic fields (SFs), the flow field results and the associated scalar fields for the flame E show excellent agreement contrary to flame F. Then, the different exergy losses were calculated and analyzed. The heat transfer and chemical reaction are the main factors responsible for the exergy destruction during combustion. The chemical exergy of the exhaust gases shows a strong relation between the exergy losses and combustion emission as well as the gas exhaust temperature. |
format | Online Article Text |
id | pubmed-9031898 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90318982022-04-23 The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy Agrebi, Senda Dreßler, Louis Nishad, Kaushal Entropy (Basel) Article The entropy generation analysis of adiabatic combustion systems was performed to quantify the exergy losses which are mainly the exergy destroyed during combustion inside the chamber and in the exhaust gases. The purpose of the present work was therefore: (a) to extend the exergy destruction analysis by including the exhaust gas exergy while applying the hybrid filtered Eulerian stochastic field (ESF) method coupled with the FGM chemistry tabulation strategy; (b) to introduce a novel method for evaluating the exergy content of exhaust gases; and (c) to highlight a link between exhaust gas exergy and combustion emissions. In this work, the adiabatic Sandia flames E and F were chosen as application combustion systems. First, the numerical results of the flow and scalar fields were validated by comparison with the experimental data. The under-utilization of eight stochastic fields (SFs), the flow field results and the associated scalar fields for the flame E show excellent agreement contrary to flame F. Then, the different exergy losses were calculated and analyzed. The heat transfer and chemical reaction are the main factors responsible for the exergy destruction during combustion. The chemical exergy of the exhaust gases shows a strong relation between the exergy losses and combustion emission as well as the gas exhaust temperature. MDPI 2022-04-18 /pmc/articles/PMC9031898/ /pubmed/35455227 http://dx.doi.org/10.3390/e24040564 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Agrebi, Senda Dreßler, Louis Nishad, Kaushal The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title | The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title_full | The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title_fullStr | The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title_full_unstemmed | The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title_short | The Exergy Losses Analysis in Adiabatic Combustion Systems including the Exhaust Gas Exergy |
title_sort | exergy losses analysis in adiabatic combustion systems including the exhaust gas exergy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031898/ https://www.ncbi.nlm.nih.gov/pubmed/35455227 http://dx.doi.org/10.3390/e24040564 |
work_keys_str_mv | AT agrebisenda theexergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy AT dreßlerlouis theexergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy AT nishadkaushal theexergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy AT agrebisenda exergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy AT dreßlerlouis exergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy AT nishadkaushal exergylossesanalysisinadiabaticcombustionsystemsincludingtheexhaustgasexergy |