Cargando…

Potential of Near-Infrared Spectroscopy for the Determination of Olive Oil Quality

The analysis of the physico-chemical parameters of quality of olive oil is still carried out in laboratories using chemicals and generating waste, which is relatively costly and time-consuming. Among the various alternatives for the online or on-site measurement of these parameters, the available li...

Descripción completa

Detalles Bibliográficos
Autor principal: García Martín, Juan Francisco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031905/
https://www.ncbi.nlm.nih.gov/pubmed/35458818
http://dx.doi.org/10.3390/s22082831
Descripción
Sumario:The analysis of the physico-chemical parameters of quality of olive oil is still carried out in laboratories using chemicals and generating waste, which is relatively costly and time-consuming. Among the various alternatives for the online or on-site measurement of these parameters, the available literature highlights the use of near-infrared spectroscopy (NIRS). This article intends to comprehensively review the state-of-the-art research and the actual potential of NIRS for the analysis of olive oil. A description of the features of the infrared spectrum of olive oil and a quick explanation of the fundamentals of NIRS and chemometrics are also included. From the results available in the literature, it can be concluded that the four most usual physico-chemical parameters that define the quality of olive oils, namely free acidity, peroxide value, K232, and K270, can be measured by NIRS with high precision. In addition, NIRS is suitable for the nutritional labeling of olive oil because of its great performance in predicting the contents in total fat, total saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids in olive oils. Other parameters of interest have the potential to be analyzed by NIRS, but the improvement of the mathematical models for their determination is required, since the errors of prediction reported so far are a bit high for practical application.