Cargando…
A Teenager Physical Fitness Evaluation Model Based on 1D-CNN with LSTM and Wearable Running PPG Recordings
People attach greater importance to the physical health of teenagers because adolescence is a critical period for the healthy development of the human body. With the progress of biosensing technologies and artificial intelligence, it is feasible to apply wearable devices to continuously record teena...
Autores principales: | Guo, Junqi, Wan, Boxin, Zheng, Siyu, Song, Aohua, Huang, Wenshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032117/ https://www.ncbi.nlm.nih.gov/pubmed/35448262 http://dx.doi.org/10.3390/bios12040202 |
Ejemplares similares
-
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
por: Mahardika T, Nurul Qashri, et al.
Publicado: (2023) -
Real-Time PPG Signal Conditioning with Long Short-Term Memory (LSTM) Network for Wearable Devices
por: Wójcikowski, Marek
Publicado: (2021) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
por: Jeong, Da Un, et al.
Publicado: (2021) -
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor
Publicado: (2022)