Cargando…

Wearable Microfluidic Sensor for the Simultaneous and Continuous Monitoring of Local Sweat Rates and Electrolyte Concentrations

Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sw...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashimoto, Yuki, Ishihara, Takako, Kuwabara, Kei, Amano, Tatsuro, Togo, Hiroyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032168/
https://www.ncbi.nlm.nih.gov/pubmed/35457880
http://dx.doi.org/10.3390/mi13040575
Descripción
Sumario:Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sweat electrolyte concentration may be an effective tool for determining appropriate rehydration. Here, we developed a novel potentially wearable sensor that can monitor both the local sweat rate and sweat electrolyte concentration continuously. The new device includes a system with a short microfluidic pathway that guides the sweat appearing on the skin to a small space in the device to form a quantifiable droplet. The sweat rate is assessed from the time for the droplet to appear and droplet volume, while an integrated electric sensor detects the sodium chloride concentration in each sweat droplet. We demonstrated that this new device could record both the flow rates of artificial sweat and its sodium chloride concentration in ranges of human sweating with an accuracy within ±10%. This is equivalent to the accuracy of commercially available sweat rate meters and sweat ion sensors. The present study provides a new perspective for the design of wearable sensors that can continuously monitor sweat rates and sweat electrolyte concentrations for potential application to a healthcare device.