Cargando…
LINA: A Linearizing Neural Network Architecture for Accurate First-Order and Second-Order Interpretations
While neural networks can provide high predictive performance, it was a challenge to identify the salient features and important feature interactions used for their predictions. This represented a key hurdle for deploying neural networks in many biomedical applications that require interpretability,...
Autores principales: | BADRÉ, ADRIEN, PAN, CHONGLE |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032252/ https://www.ncbi.nlm.nih.gov/pubmed/35462722 http://dx.doi.org/10.1109/access.2022.3163257 |
Ejemplares similares
-
Differential equations: first and second order linear differential equations
por: Saha, Snehanshu
Publicado: (2015) -
Linear differential transformations of the second order
por: Boruvka, Otakar
Publicado: (1971) -
First person – Tiantian Ji and Lina Zhang
Publicado: (2019) -
Commentary: First-Order Embodiment, Second-Order Embodiment, Third-Order Embodiment
por: Quadt, Lisa
Publicado: (2018) -
Explainable multi-task learning improves the parallel estimation of polygenic risk scores for many diseases through shared genetic basis
por: Badré, Adrien, et al.
Publicado: (2023)