Cargando…
Image Super-Resolution via Dual-Level Recurrent Residual Networks
Recently, the feedforward architecture of a super-resolution network based on deep learning was proposed to learn the representation of a low-resolution (LR) input and the non-linear mapping from these inputs to a high-resolution (HR) output, but this method cannot completely solve the interdependen...
Autores principales: | Tan, Congming, Wang, Liejun, Cheng, Shuli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032326/ https://www.ncbi.nlm.nih.gov/pubmed/35459043 http://dx.doi.org/10.3390/s22083058 |
Ejemplares similares
-
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse
por: Tan, Congming, et al.
Publicado: (2022) -
HARNU-Net: Hierarchical Attention Residual Nested U-Net for Change Detection in Remote Sensing Images
por: Li, Haojin, et al.
Publicado: (2022) -
Dual Branch Attention Network for Person Re-Identification
por: Fan, Denghua, et al.
Publicado: (2021) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Light Field Image Super-Resolution Using Deep Residual Networks on Lenslet Images
por: Salem, Ahmed, et al.
Publicado: (2023)