Cargando…
Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey
Network Slicing and Deep Reinforcement Learning (DRL) are vital enablers for achieving 5G and 6G networks. A 5G/6G network can comprise various network slices from unique or multiple tenants. Network providers need to perform intelligent and efficient resource management to offer slices that meet th...
Autores principales: | Hurtado Sánchez, Johanna Andrea, Casilimas, Katherine, Caicedo Rendon, Oscar Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032530/ https://www.ncbi.nlm.nih.gov/pubmed/35459015 http://dx.doi.org/10.3390/s22083031 |
Ejemplares similares
-
Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks
por: Chen, Geng, et al.
Publicado: (2022) -
Model-Based Reinforcement Learning with Automated Planning for Network Management
por: Ordonez, Armando, et al.
Publicado: (2022) -
5G Network Slicing: Methods to Support Blockchain and Reinforcement Learning
por: Hu, Juan, et al.
Publicado: (2022) -
Deep reinforcement learning for wireless networks
por: Yu, F Richard, et al.
Publicado: (2019) -
Resource-Efficient Sensor Data Management for Autonomous Systems Using Deep Reinforcement Learning
por: Jeong, Seunghwan, et al.
Publicado: (2019)