Cargando…

A Review on Differential Abundance Analysis Methods for Mass Spectrometry-Based Metabolomic Data

This review presents an overview of the statistical methods on differential abundance (DA) analysis for mass spectrometry (MS)-based metabolomic data. MS has been widely used for metabolomic abundance profiling in biological samples. The high-throughput data produced by MS often contain a large frac...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Zhengyan, Wang, Chi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032534/
https://www.ncbi.nlm.nih.gov/pubmed/35448492
http://dx.doi.org/10.3390/metabo12040305
Descripción
Sumario:This review presents an overview of the statistical methods on differential abundance (DA) analysis for mass spectrometry (MS)-based metabolomic data. MS has been widely used for metabolomic abundance profiling in biological samples. The high-throughput data produced by MS often contain a large fraction of zero values caused by the absence of certain metabolites and the technical detection limits of MS. Various statistical methods have been developed to characterize the zero-inflated metabolomic data and perform DA analysis, ranging from simple tests to more complex models including parametric, semi-parametric, and non-parametric approaches. In this article, we discuss and compare DA analysis methods regarding their assumptions and statistical modeling techniques.