Cargando…

Prediction of Pulmonary Function Parameters Based on a Combination Algorithm

Objective: Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ruishi, Wang, Peng, Li, Yueqi, Mou, Xiuying, Zhao, Zhan, Chen, Xianxiang, Du, Lidong, Yang, Ting, Zhan, Qingyuan, Fang, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032560/
https://www.ncbi.nlm.nih.gov/pubmed/35447696
http://dx.doi.org/10.3390/bioengineering9040136
_version_ 1784692673611825152
author Zhou, Ruishi
Wang, Peng
Li, Yueqi
Mou, Xiuying
Zhao, Zhan
Chen, Xianxiang
Du, Lidong
Yang, Ting
Zhan, Qingyuan
Fang, Zhen
author_facet Zhou, Ruishi
Wang, Peng
Li, Yueqi
Mou, Xiuying
Zhao, Zhan
Chen, Xianxiang
Du, Lidong
Yang, Ting
Zhan, Qingyuan
Fang, Zhen
author_sort Zhou, Ruishi
collection PubMed
description Objective: Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function parameter prediction. Methods: We first established a system to collect volumetric capnography and then processed the data with a combination algorithm to predict pulmonary function parameters. The algorithm consists of three main parts: a medical feature regression structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) algorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN) algorithm. Results: The root mean square error (RMSE) of the pulmonary function parameters predicted by the combination algorithm was less than 0.39L and the R(2) was found to be greater than 0.85 through a ten-fold cross-validation experiment. Conclusion: Compared with the existing methods for predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate. At the same time, this algorithm uses specific processing structures for different features, and the interpretability of the algorithm is ensured while mining the feature depth information.
format Online
Article
Text
id pubmed-9032560
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90325602022-04-23 Prediction of Pulmonary Function Parameters Based on a Combination Algorithm Zhou, Ruishi Wang, Peng Li, Yueqi Mou, Xiuying Zhao, Zhan Chen, Xianxiang Du, Lidong Yang, Ting Zhan, Qingyuan Fang, Zhen Bioengineering (Basel) Article Objective: Pulmonary function parameters play a pivotal role in the assessment of respiratory diseases. However, the accuracy of the existing methods for the prediction of pulmonary function parameters is low. This study proposes a combination algorithm to improve the accuracy of pulmonary function parameter prediction. Methods: We first established a system to collect volumetric capnography and then processed the data with a combination algorithm to predict pulmonary function parameters. The algorithm consists of three main parts: a medical feature regression structure consisting of support vector machines (SVM) and extreme gradient boosting (XGBoost) algorithms, a sequence feature regression structure consisting of one-dimensional convolutional neural network (1D-CNN), and an error correction structure using improved K-nearest neighbor (KNN) algorithm. Results: The root mean square error (RMSE) of the pulmonary function parameters predicted by the combination algorithm was less than 0.39L and the R(2) was found to be greater than 0.85 through a ten-fold cross-validation experiment. Conclusion: Compared with the existing methods for predicting pulmonary function parameters, the present algorithm can achieve a higher accuracy rate. At the same time, this algorithm uses specific processing structures for different features, and the interpretability of the algorithm is ensured while mining the feature depth information. MDPI 2022-03-25 /pmc/articles/PMC9032560/ /pubmed/35447696 http://dx.doi.org/10.3390/bioengineering9040136 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhou, Ruishi
Wang, Peng
Li, Yueqi
Mou, Xiuying
Zhao, Zhan
Chen, Xianxiang
Du, Lidong
Yang, Ting
Zhan, Qingyuan
Fang, Zhen
Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title_full Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title_fullStr Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title_full_unstemmed Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title_short Prediction of Pulmonary Function Parameters Based on a Combination Algorithm
title_sort prediction of pulmonary function parameters based on a combination algorithm
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032560/
https://www.ncbi.nlm.nih.gov/pubmed/35447696
http://dx.doi.org/10.3390/bioengineering9040136
work_keys_str_mv AT zhouruishi predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT wangpeng predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT liyueqi predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT mouxiuying predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT zhaozhan predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT chenxianxiang predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT dulidong predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT yangting predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT zhanqingyuan predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm
AT fangzhen predictionofpulmonaryfunctionparametersbasedonacombinationalgorithm