Cargando…
Simultaneous Inhibitory Effects of All-Trans Astaxanthin on Acetylcholinesterase and Oxidative Stress
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinester...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032561/ https://www.ncbi.nlm.nih.gov/pubmed/35447920 http://dx.doi.org/10.3390/md20040247 |
Sumario: | Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC(50) value) of 8.64 μmol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimer´s disease prevention. |
---|