Cargando…
High Estrogen Levels Cause Greater Leg Muscle Fatigability in Eumenorrheic Young Women after 4 mA Transcranial Direct Current Stimulation
Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032567/ https://www.ncbi.nlm.nih.gov/pubmed/35448037 http://dx.doi.org/10.3390/brainsci12040506 |
Sumario: | Transcranial direct current stimulation (tDCS) research has shown great outcome variability in motor performance tasks, with one possible source being sex differences. The goal of this study was to evaluate the effects of estrogen levels on leg muscle fatigability during a fatigue task (FT) after 4 mA tDCS over the left motor cortex (M1). Ten young, healthy eumenorrheic women received 4 mA anodal active or sham stimulation over the left M1 during periods of high and low estrogen levels. A fatigue index (FI) was calculated to quantify fatigability, and the electromyography (EMG) of the knee extensors and flexors was recorded during the FT. The findings showed that tDCS applied during high estrogen levels resulted in greater leg muscle fatigability. Furthermore, a significant increase in EMG activity of the right knee extensors was observed during periods of active stimulation, independent of estrogen level. These results suggest that estrogen levels should be considered in tDCS studies with young healthy women. |
---|