Cargando…
Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults?
Sufficient physical activity (PA) reduces the risk of a myriad of diseases and preserves physical capabilities in later life. While there have been significant achievements in mapping accelerations to real-life movements using machine learning (ML), errors continue to be common, particularly for wri...
Autores principales: | Bai, Chen, Wanigatunga, Amal A., Saldana, Santiago, Casanova, Ramon, Manini, Todd M., Mardini, Mamoun T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032589/ https://www.ncbi.nlm.nih.gov/pubmed/35459045 http://dx.doi.org/10.3390/s22083061 |
Ejemplares similares
-
Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning
por: Mardini, Mamoun T., et al.
Publicado: (2021) -
Are Machine Learning Models Used to Represent Accelerometry Data Robust to Age Differences?
por: Manini, Todd, et al.
Publicado: (2021) -
WRIST-WORN TRI-AXIAL ACCELEROMETER VALIDATION IN YOUNG, MIDDLE-AGED, AND OLDER ADULTS
por: Manini, Todd M, et al.
Publicado: (2019) -
MOVING, THINKING, AND SLEEPING: NOVEL INSIGHTS INTO PHYSICAL AND COGNITIVE HEALTH FROM ACCELEROMETRY DATA
por: Schrack, Jennifer, et al.
Publicado: (2022) -
EXPLAINABLE MACHINE-LEARNING FOR PREDICTING PREOPERATIVE FRAILTY PHENOTYPE USING ELECTRONIC HEALTH RECORDS
por: Mardini, Mamoun, et al.
Publicado: (2022)