Cargando…
Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data
Background: Machine Learning (ML) in arthroplasty is becoming more popular, as it is perfectly suited for prediction models. However, results have been heterogeneous so far. We hypothesize that an accurate ML model for outcome prediction in THA must be able to compute arthroplasty-specific data. In...
Autores principales: | Lazic, Igor, Hinterwimmer, Florian, Langer, Severin, Pohlig, Florian, Suren, Christian, Seidl, Fritz, Rückert, Daniel, Burgkart, Rainer, von Eisenhart-Rothe, Rüdiger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032696/ https://www.ncbi.nlm.nih.gov/pubmed/35456239 http://dx.doi.org/10.3390/jcm11082147 |
Ejemplares similares
-
Prediction of complications and surgery duration in primary TKA with high accuracy using machine learning with arthroplasty-specific data
por: Hinterwimmer, Florian, et al.
Publicado: (2022) -
Machine learning in knee arthroplasty: specific data are key—a systematic review
por: Hinterwimmer, Florian, et al.
Publicado: (2022) -
Postoperative full leg radiographs exhibit less residual coronal varus deformity compared to intraoperative measurements in robotic arm-assisted total knee arthroplasty with the MAKO™ system
por: Glowalla, Claudio, et al.
Publicado: (2023) -
The synovial fluid calprotectin lateral flow test for the diagnosis of chronic prosthetic joint infection in failed primary and revision total hip and knee arthroplasty
por: Suren, Christian, et al.
Publicado: (2023) -
Synovial calprotectin is a reliable biomarker for periprosthetic joint infections in acute-phase inflammation — a prospective cohort study
por: Lazic, Igor, et al.
Publicado: (2022)