Cargando…

Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence

Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanos...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dongju, Kim, Seo Gyun, Hong, Seungki, Madrona, Cristina, Oh, Yuna, Park, Min, Komatsu, Natsumi, Taylor, Lauren W., Chung, Bongjin, Kim, Jungwon, Hwang, Jun Yeon, Yu, Jaesang, Lee, Dong Su, Jeong, Hyeon Su, You, Nam Ho, Kim, Nam Dong, Kim, Dae-Yoon, Lee, Heon Sang, Lee, Kun-Hong, Kono, Junichiro, Wehmeyer, Geoff, Pasquali, Matteo, Vilatela, Juan J., Ryu, Seongwoo, Ku, Bon-Cheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032978/
https://www.ncbi.nlm.nih.gov/pubmed/35452295
http://dx.doi.org/10.1126/sciadv.abn0939
Descripción
Sumario:Theoretical considerations suggest that the strength of carbon nanotube (CNT) fibers be exceptional; however, their mechanical performance values are much lower than the theoretical values. To achieve macroscopic fibers with ultrahigh performance, we developed a method to form multidimensional nanostructures by coalescence of individual nanotubes. The highly aligned wet-spun fibers of single- or double-walled nanotube bundles were graphitized to induce nanotube collapse and multi-inner walled structures. These advanced nanostructures formed a network of interconnected, close-packed graphitic domains. Their near-perfect alignment and high longitudinal crystallinity that increased the shear strength between CNTs while retaining notable flexibility. The resulting fibers have an exceptional combination of high tensile strength (6.57 GPa), modulus (629 GPa), thermal conductivity (482 W/m·K), and electrical conductivity (2.2 MS/m), thereby overcoming the limits associated with conventional synthetic fibers.