Cargando…
A Novel Lightweight Real-Time Traffic Sign Detection Integration Framework Based on YOLOv4
As a popular research direction in the field of intelligent transportation, various scholars have widely concerned themselves with traffic sign detection However, there are still some key issues that need to be further solved in order to thoroughly apply related technologies to real scenarios, such...
Autores principales: | Gu, Yang, Si, Bingfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033030/ https://www.ncbi.nlm.nih.gov/pubmed/35455150 http://dx.doi.org/10.3390/e24040487 |
Ejemplares similares
-
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
por: Wang, Yongjie, et al.
Publicado: (2022) -
Mixed YOLOv3-LITE: A Lightweight Real-Time Object Detection Method
por: Zhao, Haipeng, et al.
Publicado: (2020) -
Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4
por: Youssouf, Njayou
Publicado: (2022) -
Traffic Sign Recognition Based on the YOLOv3 Algorithm
por: Gong, Chunpeng, et al.
Publicado: (2022) -
Lightweight Helmet Detection Algorithm Using an Improved YOLOv4 †
por: Chen, Junhua, et al.
Publicado: (2023)