Cargando…
Comparison of Unsupervised Machine Learning Approaches for Cluster Analysis to Define Subgroups of Heart Failure with Preserved Ejection Fraction with Different Outcomes
Heart failure with preserved ejection (HFpEF) is a heterogenous condition affecting nearly half of all patients with heart failure (HF). Artificial intelligence methodologies can be useful to identify patient subclassifications with important clinical implications. We sought a comparison of differen...
Autores principales: | Nouraei, Hirmand, Nouraei, Hooman, Rabkin, Simon W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033031/ https://www.ncbi.nlm.nih.gov/pubmed/35447735 http://dx.doi.org/10.3390/bioengineering9040175 |
Ejemplares similares
-
Value of the New Spline QTc Formula in Adjusting for Pacing-Induced Changes in Heart Rate
por: Nouraei, Hirmand, et al.
Publicado: (2018) -
Evaluating the adverse outcome of subtypes of heart failure with preserved ejection fraction defined by machine learning: A systematic review focused on defining high risk phenogroups
por: Rabkin, Simon W.
Publicado: (2022) -
Epigenetics in Heart Failure: Role of DNA Methylation in Potential Pathways Leading to Heart Failure with Preserved Ejection Fraction
por: Rabkin, Simon W., et al.
Publicado: (2023) -
Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction
por: Woolley, Rebecca J., et al.
Publicado: (2021) -
Heart failure with preserved ejection fraction
por: Rigolli, Marzia, et al.
Publicado: (2013)