Cargando…

Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)

Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain–Computer Interface (BCI), to provide better human–machine interactions. Several studies have been conducted...

Descripción completa

Detalles Bibliográficos
Autores principales: Algarni, Mona, Saeed, Faisal, Al-Hadhrami, Tawfik, Ghabban, Fahad, Al-Sarem, Mohammed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033053/
https://www.ncbi.nlm.nih.gov/pubmed/35458962
http://dx.doi.org/10.3390/s22082976
_version_ 1784692796173582336
author Algarni, Mona
Saeed, Faisal
Al-Hadhrami, Tawfik
Ghabban, Fahad
Al-Sarem, Mohammed
author_facet Algarni, Mona
Saeed, Faisal
Al-Hadhrami, Tawfik
Ghabban, Fahad
Al-Sarem, Mohammed
author_sort Algarni, Mona
collection PubMed
description Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain–Computer Interface (BCI), to provide better human–machine interactions. Several studies have been conducted in the field of emotion recognition. However, one of the most important issues facing the emotion recognition process, using EEG signals, is the accuracy of recognition. This paper proposes a deep learning-based approach for emotion recognition through EEG signals, which includes data selection, feature extraction, feature selection and classification phases. This research serves the medical field, as the emotion recognition model helps diagnose psychological and behavioral disorders. The research contributes to improving the performance of the emotion recognition model to obtain more accurate results, which, in turn, aids in making the correct medical decisions. A standard pre-processed Database of Emotion Analysis using Physiological signaling (DEAP) was used in this work. The statistical features, wavelet features, and Hurst exponent were extracted from the dataset. The feature selection task was implemented through the Binary Gray Wolf Optimizer. At the classification stage, the stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model was used to recognize human emotions. In this paper, emotions are classified into three main classes: arousal, valence and liking. The proposed approach achieved high accuracy compared to the methods used in past studies, with an average accuracy of 99.45%, 96.87% and 99.68% of valence, arousal, and liking, respectively, which is considered a high performance for the emotion recognition model.
format Online
Article
Text
id pubmed-9033053
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-90330532022-04-23 Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM) Algarni, Mona Saeed, Faisal Al-Hadhrami, Tawfik Ghabban, Fahad Al-Sarem, Mohammed Sensors (Basel) Article Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain–Computer Interface (BCI), to provide better human–machine interactions. Several studies have been conducted in the field of emotion recognition. However, one of the most important issues facing the emotion recognition process, using EEG signals, is the accuracy of recognition. This paper proposes a deep learning-based approach for emotion recognition through EEG signals, which includes data selection, feature extraction, feature selection and classification phases. This research serves the medical field, as the emotion recognition model helps diagnose psychological and behavioral disorders. The research contributes to improving the performance of the emotion recognition model to obtain more accurate results, which, in turn, aids in making the correct medical decisions. A standard pre-processed Database of Emotion Analysis using Physiological signaling (DEAP) was used in this work. The statistical features, wavelet features, and Hurst exponent were extracted from the dataset. The feature selection task was implemented through the Binary Gray Wolf Optimizer. At the classification stage, the stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model was used to recognize human emotions. In this paper, emotions are classified into three main classes: arousal, valence and liking. The proposed approach achieved high accuracy compared to the methods used in past studies, with an average accuracy of 99.45%, 96.87% and 99.68% of valence, arousal, and liking, respectively, which is considered a high performance for the emotion recognition model. MDPI 2022-04-13 /pmc/articles/PMC9033053/ /pubmed/35458962 http://dx.doi.org/10.3390/s22082976 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Algarni, Mona
Saeed, Faisal
Al-Hadhrami, Tawfik
Ghabban, Fahad
Al-Sarem, Mohammed
Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title_full Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title_fullStr Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title_full_unstemmed Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title_short Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
title_sort deep learning-based approach for emotion recognition using electroencephalography (eeg) signals using bi-directional long short-term memory (bi-lstm)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033053/
https://www.ncbi.nlm.nih.gov/pubmed/35458962
http://dx.doi.org/10.3390/s22082976
work_keys_str_mv AT algarnimona deeplearningbasedapproachforemotionrecognitionusingelectroencephalographyeegsignalsusingbidirectionallongshorttermmemorybilstm
AT saeedfaisal deeplearningbasedapproachforemotionrecognitionusingelectroencephalographyeegsignalsusingbidirectionallongshorttermmemorybilstm
AT alhadhramitawfik deeplearningbasedapproachforemotionrecognitionusingelectroencephalographyeegsignalsusingbidirectionallongshorttermmemorybilstm
AT ghabbanfahad deeplearningbasedapproachforemotionrecognitionusingelectroencephalographyeegsignalsusingbidirectionallongshorttermmemorybilstm
AT alsaremmohammed deeplearningbasedapproachforemotionrecognitionusingelectroencephalographyeegsignalsusingbidirectionallongshorttermmemorybilstm