Cargando…
Prediction of Emergency Cesarean Section Using Machine Learning Methods: Development and External Validation of a Nationwide Multicenter Dataset in Republic of Korea
This study was a multicenter retrospective cohort study of term nulliparous women who underwent labor, and was conducted to develop an automated machine learning model for prediction of emergent cesarean section (CS) before onset of labor. Nine machine learning methods of logistic regression, random...
Autores principales: | Wie, Jeong Ha, Lee, Se Jin, Choi, Sae Kyung, Jo, Yun Sung, Hwang, Han Sung, Park, Mi Hye, Kim, Yeon Hee, Shin, Jae Eun, Kil, Ki Cheol, Kim, Su Mi, Choi, Bong Suk, Hong, Hanul, Seol, Hyun-Joo, Won, Hye-Sung, Ko, Hyun Sun, Na, Sunghun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033083/ https://www.ncbi.nlm.nih.gov/pubmed/35455095 http://dx.doi.org/10.3390/life12040604 |
Ejemplares similares
-
Importance of Preoperative Screening Strategies for Coronavirus Disease 2019 in Patients Undergoing Cesarean Sections: A Retrospective, Large Single-Center, Observational Cohort Study
por: Kim, Ha-Jung, et al.
Publicado: (2021) -
Predictors of Newborn’s Weight for Height: A Machine Learning Study Using Nationwide Multicenter Ultrasound Data
por: Ahn, Ki Hoon, et al.
Publicado: (2021) -
Prediction of newborn’s body mass index using nationwide multicenter ultrasound data: a machine-learning study
por: Lee, Kwang-Sig, et al.
Publicado: (2021) -
Emergency cesarean section in an epidemic of the middle east respiratory syndrome: a case report
por: Park, Mi Hye, et al.
Publicado: (2016) -
COVID-19 Vaccine-Associated Pneumonitis in the Republic of Korea: A Nationwide Multicenter Survey
por: Yoo, Hongseok, et al.
Publicado: (2023)