Cargando…
Scalable and Transferable Reinforcement Learning for Multi-Agent Mixed Cooperative–Competitive Environments Based on Hierarchical Graph Attention
Most previous studies on multi-agent systems aim to coordinate agents to achieve a common goal, but the lack of scalability and transferability prevents them from being applied to large-scale multi-agent tasks. To deal with these limitations, we propose a deep reinforcement learning (DRL) based mult...
Autores principales: | Chen, Yining, Song, Guanghua, Ye, Zhenhui, Jiang, Xiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033143/ https://www.ncbi.nlm.nih.gov/pubmed/35455226 http://dx.doi.org/10.3390/e24040563 |
Ejemplares similares
-
Space-Air-Ground Integrated Mobile Crowdsensing for Partially Observable Data Collection by Multi-Scale Convolutional Graph Reinforcement Learning
por: Ren, Yixiang, et al.
Publicado: (2022) -
Recipe Recommendation With Hierarchical Graph Attention Network
por: Tian, Yijun, et al.
Publicado: (2022) -
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020) -
Multiagent cooperation and competition with deep reinforcement learning
por: Tampuu, Ardi, et al.
Publicado: (2017) -
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
por: Zhao, Ming, et al.
Publicado: (2020)