Cargando…
Au(i)-, Ag(i)-, and Pd(ii)-coordination-driven diverse self-assembly of an N-heterocyclic carbene-based amphiphile
Au(i)-, Ag(i)-, and Pd(ii)-coordination-driven diverse self-assembly of an N-heterocyclic carbene (NHC)-based amphiphile was demonstrated herein. The transition metals had significant effects over the whole system, setting the self-assembly direction of the NHC-based amphiphile. More specifically, A...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033218/ https://www.ncbi.nlm.nih.gov/pubmed/35480220 http://dx.doi.org/10.1039/d1ra02719k |
Sumario: | Au(i)-, Ag(i)-, and Pd(ii)-coordination-driven diverse self-assembly of an N-heterocyclic carbene (NHC)-based amphiphile was demonstrated herein. The transition metals had significant effects over the whole system, setting the self-assembly direction of the NHC-based amphiphile. More specifically, Au(i)- and Ag(i)-coordination to the NHC-based amphiphile promoted the formation of spherical and hexagonal structures, while Pd(ii)-coordination promoted the formation of cylindrical and lamellar structures. |
---|