Cargando…
The NAO Variability Prediction and Forecasting with Multiple Time Scales Driven by ENSO Using Machine Learning Approaches
Machine learning methods have now become an optional technique in Earth science research, and such data-driven solutions have also made tremendous progress in weather forecasting and climate prediction in recent years. Since climate data are typically time series, the neural network layers, which ca...
Autores principales: | Mu, Bin, Li, Jing, Yuan, Shijin, Luo, Xiaodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033329/ https://www.ncbi.nlm.nih.gov/pubmed/35463271 http://dx.doi.org/10.1155/2022/6141966 |
Ejemplares similares
-
Monthly ENSO Forecast Skill and Lagged Ensemble Size
por: Trenary, L., et al.
Publicado: (2018) -
Variability of ENSO Forecast Skill in 2‐Year Global Reforecasts Over the 20th Century
por: Weisheimer, Antje, et al.
Publicado: (2022) -
Mean Bias in Seasonal Forecast Model and ENSO Prediction Error
por: Kim, Seon Tae, et al.
Publicado: (2017) -
ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela
por: Vincenti-Gonzalez, M. F., et al.
Publicado: (2018) -
The impacts of Extra-tropical ENSO Precursors on Tropical Pacific Decadal-scale Variability
por: Zhao, Yingying, et al.
Publicado: (2020)