Cargando…
Direct enantioseparation of axially chiral 1,1′-biaryl-2,2′-diols using amidine-based resolving agents
Amidine-based optically active resolving agents for enantiomer separation of axially chiral 1,1′-biaryl-2,2′-diols have been developed. A strongly basic amidine bearing no substituents on its nitrogen atoms enables the formation of their diastereomeric salts upon being mixed with weakly acidic pheno...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033420/ https://www.ncbi.nlm.nih.gov/pubmed/35480945 http://dx.doi.org/10.1039/d1ra03546k |
Sumario: | Amidine-based optically active resolving agents for enantiomer separation of axially chiral 1,1′-biaryl-2,2′-diols have been developed. A strongly basic amidine bearing no substituents on its nitrogen atoms enables the formation of their diastereomeric salts upon being mixed with weakly acidic phenol derivatives. Enantiopure 1,1′-biaryl-2,2′-diols can be obtained in high yields after only one crystallization of their salts with the chiral amidine derived from dehydroabietic acid. X-ray crystallography revealed that the amidine moiety forms a salt with the phenol group and additional intermolecular NH/π interactions contribute to the efficient chiral recognition process. |
---|