Cargando…

Synthesis, optical and electrochemical properties of 4,4′-bibenzo[c]thiophene derivatives

We designed and synthesized unsubstituted 4,4′-bibenzo[c]thiophene 4,4′-BBT and its silyl-substituted derivatives 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT with one or two tert-butyldimethylsilyl groups on each thiophene ring, as new π-building blocks in emitters, photosensitizers and semiconductor...

Descripción completa

Detalles Bibliográficos
Autores principales: Obayashi, Kotaro, Imato, Keiichi, Aoyama, Satoshi, Enoki, Toshiaki, Akiyama, Seiji, Ishida, Mio, Suga, Seiji, Mitsudo, Koichi, Ooyama, Yousuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033462/
https://www.ncbi.nlm.nih.gov/pubmed/35478650
http://dx.doi.org/10.1039/d1ra01189h
Descripción
Sumario:We designed and synthesized unsubstituted 4,4′-bibenzo[c]thiophene 4,4′-BBT and its silyl-substituted derivatives 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT with one or two tert-butyldimethylsilyl groups on each thiophene ring, as new π-building blocks in emitters, photosensitizers and semiconductors for organic optoelectronic devices. The characterization of 4,4′-BBT, 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT was successfully determined by FTIR, (1)H and (13)C NMR measurements, high-resolution mass spectrometry (HRMS) analysis, photoabsorption and fluorescence spectroscopy, cyclic voltammetry (CV) and density functional theory (DFT) calculations. Moreover, a single-crystal X-ray structural analysis was successfully made for 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT. The photoabsorption and fluorescence maxima (λ(abs)(max) and λ(fl)(max)) of the three 4,4′-bibenzo[c]thiophene derivatives in toluene exhibit bathochromic shifts in the order of 4,4′-BBT (359 nm and 410 nm) < 1,1′-Si-4,4′-BBT (366 nm and 420 nm) < 1,1′,3,3′-Si-4,4′-BBT (371 nm and 451 nm). The HOMO and LUMO energy levels rise in the order of 4,4′-BBT (−5.55 eV and −2.39 eV) < 1,1′-Si-4,4′-BBT (−5.45 eV and −2.34 eV) < 1,1′,3,3′-Si-4,4′-BBT (−5.34 eV and −2.30 eV), but the rise of the HOMO energy level is larger than that of the LUMO energy level, resulting in the bathochromic shift of the photoabsorption band from 4,4′-BBT to 1,1′,3,3′-Si-4,4′-BBT. The fluorescence quantum yields (Φ(fl)) of 4,4′-BBT, 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT in toluene are 0.41, 0.41 and 0.36, respectively. It is worth mentioning that in the solid state 1,1′-Si-4,4′-BBT and 1,1′,3,3′-Si-4,4′-BBT show relatively high Φ(fl-solid) values of 0.22 and 0.25, respectively, whereas 4,4′-BBT exhibits poor solid-state fluorescence properties (Φ(fl-solid) < 0.02). This work provides an efficient synthetic method for the 4,4′-bibenzo[c]thiophene derivatives and their photophysical properties in the solution and solid state, electrochemical properties and X-ray crystal structures.