Cargando…
Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement
Glass fiber-reinforced cementitious material is one of the significant components in structural materials playing vital roles in enhancing the tensile and flexural behavior of cement-based quasi-brittle materials. Compared with carbon and polymer fibers, its intrinsic similar silicate-based composit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033497/ https://www.ncbi.nlm.nih.gov/pubmed/35478619 http://dx.doi.org/10.1039/d1ra01875b |
_version_ | 1784692903750139904 |
---|---|
author | Ma, Pengfei Xin, Minglian Zhang, Yan Ge, Shenguang Wang, Dan Jiang, Congcong Zhang, Lina Cheng, Xin |
author_facet | Ma, Pengfei Xin, Minglian Zhang, Yan Ge, Shenguang Wang, Dan Jiang, Congcong Zhang, Lina Cheng, Xin |
author_sort | Ma, Pengfei |
collection | PubMed |
description | Glass fiber-reinforced cementitious material is one of the significant components in structural materials playing vital roles in enhancing the tensile and flexural behavior of cement-based quasi-brittle materials. Compared with carbon and polymer fibers, its intrinsic similar silicate-based composition to cement was endowed with better bonding properties and compatibility with cement-based materials. However, the poor alkali resistance of glass fibers restrained their potential development for spreading to applications in construction fields. In this study, dopamine-modified glass fibers (DP) were self-polymerized at ambient temperature by a facile method for enhancing the alkali resistance of glass fibers. Scanning electron microscopy and X-ray photoelectron spectroscopy were utilized for characterizing DP. The duration of reaction and fiber to solution ratio were adjusted with an optimal reaction time of 12 h and fiber to solution ratio of 0.12 g ml(−1) acquired. Alkali resistance was measured by strength retention tests in both mortar and sodium hydroxide solution. Compared with untreated glass fibers (UN), DP exhibited a distinct improvement in strength retention rate of 37.1% and 18.9% under mortar and sodium hydroxide solution environments, respectively. Also, flexural strength tests of DP-reinforced cement were conducted, and its strength was increased in comparison with that of UN-reinforced cement by 58.2%. As a consequence, a novel simple method for improving the alkali resistance of glass fibers was proposed and is anticipated to promote the development and applications of glass-fiber reinforced cement-based materials. |
format | Online Article Text |
id | pubmed-9033497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90334972022-04-26 Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement Ma, Pengfei Xin, Minglian Zhang, Yan Ge, Shenguang Wang, Dan Jiang, Congcong Zhang, Lina Cheng, Xin RSC Adv Chemistry Glass fiber-reinforced cementitious material is one of the significant components in structural materials playing vital roles in enhancing the tensile and flexural behavior of cement-based quasi-brittle materials. Compared with carbon and polymer fibers, its intrinsic similar silicate-based composition to cement was endowed with better bonding properties and compatibility with cement-based materials. However, the poor alkali resistance of glass fibers restrained their potential development for spreading to applications in construction fields. In this study, dopamine-modified glass fibers (DP) were self-polymerized at ambient temperature by a facile method for enhancing the alkali resistance of glass fibers. Scanning electron microscopy and X-ray photoelectron spectroscopy were utilized for characterizing DP. The duration of reaction and fiber to solution ratio were adjusted with an optimal reaction time of 12 h and fiber to solution ratio of 0.12 g ml(−1) acquired. Alkali resistance was measured by strength retention tests in both mortar and sodium hydroxide solution. Compared with untreated glass fibers (UN), DP exhibited a distinct improvement in strength retention rate of 37.1% and 18.9% under mortar and sodium hydroxide solution environments, respectively. Also, flexural strength tests of DP-reinforced cement were conducted, and its strength was increased in comparison with that of UN-reinforced cement by 58.2%. As a consequence, a novel simple method for improving the alkali resistance of glass fibers was proposed and is anticipated to promote the development and applications of glass-fiber reinforced cement-based materials. The Royal Society of Chemistry 2021-05-28 /pmc/articles/PMC9033497/ /pubmed/35478619 http://dx.doi.org/10.1039/d1ra01875b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ma, Pengfei Xin, Minglian Zhang, Yan Ge, Shenguang Wang, Dan Jiang, Congcong Zhang, Lina Cheng, Xin Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title | Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title_full | Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title_fullStr | Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title_full_unstemmed | Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title_short | Facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
title_sort | facile synthesis of novel dopamine-modified glass fibers for improving alkali resistance of fibers and flexural strength of fiber-reinforced cement |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033497/ https://www.ncbi.nlm.nih.gov/pubmed/35478619 http://dx.doi.org/10.1039/d1ra01875b |
work_keys_str_mv | AT mapengfei facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT xinminglian facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT zhangyan facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT geshenguang facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT wangdan facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT jiangcongcong facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT zhanglina facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement AT chengxin facilesynthesisofnoveldopaminemodifiedglassfibersforimprovingalkaliresistanceoffibersandflexuralstrengthoffiberreinforcedcement |