Cargando…

Fixation-related saccadic inhibition in free viewing in response to stimulus saliency

Microsaccades that occur during fixation were studied extensively in response to transient stimuli, showing a typical inhibition (Oculomotor Inhibition, OMI), and a later release with a latency that depends on stimulus saliency, attention, and expectations. Here, we investigated the hypothesis that...

Descripción completa

Detalles Bibliográficos
Autores principales: Kadosh, Oren, Bonneh, Yoram S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033846/
https://www.ncbi.nlm.nih.gov/pubmed/35459790
http://dx.doi.org/10.1038/s41598-022-10605-1
Descripción
Sumario:Microsaccades that occur during fixation were studied extensively in response to transient stimuli, showing a typical inhibition (Oculomotor Inhibition, OMI), and a later release with a latency that depends on stimulus saliency, attention, and expectations. Here, we investigated the hypothesis that in free viewing every saccade provides a new transient stimulation that should result in a stimulus-dependent OMI like a flashed presentation during fixation. Participants (N = 16) freely inspected static displays of randomly oriented Gabor texture images, with varied contrast and spatial frequency (SF) for periods of 10 s each. Eye tracking recordings were divided into epochs triggered by saccade landing (> 1 dva), and microsaccade latency relative to fixation onset was computed (msRT). We found that the msRT in free viewing was shorter for more salient stimuli (higher contrast or lower SF), as previously found for flashed stimuli. It increased with saccade size and decreased across successive saccades, but only for higher contrast, suggesting contrast-dependent repetition enhancement in free viewing. Our results indicate that visual stimulus-dependent inhibition of microsaccades also applies to free viewing. These findings are in agreement with the similarity found between event-related and fixation-related potentials and open the way for studies combining both approaches to study natural vision.