Cargando…

Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning

Transfer of information across membranes is fundamental to the function of all organisms and is primarily initiated by transmembrane receptors. For many receptors, how ligand sensitivity is fine-tuned and how disease associated mutations modulate receptor conformation to allosterically affect recept...

Descripción completa

Detalles Bibliográficos
Autores principales: Schamber, Michael R., Vafabakhsh, Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033857/
https://www.ncbi.nlm.nih.gov/pubmed/35459864
http://dx.doi.org/10.1038/s41467-022-29897-y
Descripción
Sumario:Transfer of information across membranes is fundamental to the function of all organisms and is primarily initiated by transmembrane receptors. For many receptors, how ligand sensitivity is fine-tuned and how disease associated mutations modulate receptor conformation to allosterically affect receptor sensitivity are unknown. Here we map the activation of the calcium-sensing receptor (CaSR) - a dimeric class C G protein-coupled receptor (GPCR) and responsible for maintaining extracellular calcium in vertebrates. We show that CaSR undergoes unique conformational rearrangements compared to other class C GPCRs owing to specific structural features. Moreover, by analyzing disease associated mutations, we uncover a large permissiveness in the architecture of the extracellular domain of CaSR, with dynamics- and not specific receptor topology- determining the effect of a mutation. We show a structural hub at the dimer interface allosterically controls CaSR activation via focused electrostatic repulsion. Changes in the surface charge distribution of this hub, which is highly variable between organisms, finely tune CaSR sensitivity. This is potentially a general tuning mechanism for other dimeric receptors.