Cargando…
ODACH: a one-shot distributed algorithm for Cox model with heterogeneous multi-center data
We developed a One-shot Distributed Algorithm for Cox proportional-hazards model to analyze Heterogeneous multi-center time-to-event data (ODACH) circumventing the need for sharing patient-level information across sites. This algorithm implements a surrogate likelihood function to approximate the Co...
Autores principales: | Luo, Chongliang, Duan, Rui, Naj, Adam C., Kranzler, Henry R., Bian, Jiang, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033863/ https://www.ncbi.nlm.nih.gov/pubmed/35459767 http://dx.doi.org/10.1038/s41598-022-09069-0 |
Ejemplares similares
-
DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models
por: Luo, Chongliang, et al.
Publicado: (2022) -
Multisite learning of high-dimensional heterogeneous data with applications to opioid use disorder study of 15,000 patients across 5 clinical sites
por: Liu, Xiaokang, et al.
Publicado: (2022) -
An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes
por: Edmondson, Mackenzie J., et al.
Publicado: (2021) -
ODAL: A one-shot distributed algorithm to perform logistic regressions on electronic health records data from multiple clinical sites
por: Duan, Rui, et al.
Publicado: (2019) -
One-Shot Multi-Path Planning Using Fully Convolutional Networks in a Comparison to Other Algorithms
por: Kulvicius, Tomas, et al.
Publicado: (2021)