Cargando…

A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology

Zebrafish (Danio rerio) serves as a popular animal model for in vivo acute toxicity evaluation with the Fish embryo test (FET). Over the last few years there has been an effort to develop various systems for a high-throughput zebrafish embryo cultivation and FET. In this paper, we present a novel de...

Descripción completa

Detalles Bibliográficos
Autores principales: Panuška, Petr, Nejedlá, Zuzana, Smejkal, Jiří, Aubrecht, Petr, Liegertová, Michaela, Štofik, Marcel, Havlica, Jaromír, Malý, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033994/
https://www.ncbi.nlm.nih.gov/pubmed/35479895
http://dx.doi.org/10.1039/d1ra00846c
_version_ 1784693016383979520
author Panuška, Petr
Nejedlá, Zuzana
Smejkal, Jiří
Aubrecht, Petr
Liegertová, Michaela
Štofik, Marcel
Havlica, Jaromír
Malý, Jan
author_facet Panuška, Petr
Nejedlá, Zuzana
Smejkal, Jiří
Aubrecht, Petr
Liegertová, Michaela
Štofik, Marcel
Havlica, Jaromír
Malý, Jan
author_sort Panuška, Petr
collection PubMed
description Zebrafish (Danio rerio) serves as a popular animal model for in vivo acute toxicity evaluation with the Fish embryo test (FET). Over the last few years there has been an effort to develop various systems for a high-throughput zebrafish embryo cultivation and FET. In this paper, we present a novel design of a millifluidic system fabricated by 3D printing technology and we evaluate its functional properties on Danio rerio embryos cultivation and toxicity testing. The development and the optimization of the millifluidic chip was performed by experimental measurements supported by numerical simulations of mass and momentum transport. The cultivation chip with two inlets and one outlet consisted of two individual channels placed on top of each other and separated by a partition with cultivation chambers. An individual embryo removal functionality, which can be used during the cultivation experiments for selective unloading of any of the cultivated embryos out of the chip, was added to the chip design. This unique property raises the possibility of detailed studies of the selected embryos by additional methods. Long-term (96 hours) perfusion cultivation experiments showed a normal development of zebrafish embryos in the chip. Model toxicity tests were further performed with diluted ethanol as a teratogen. Compared to the FET assays, an increased toxic effect of the ethanol on the embryos cultivated in the chip was observed when the median lethal dose and the percentage of the morphological end-points were evaluated. We conclude that the presented 3D printed chip is suitable for long-term zebrafish embryo cultivations and toxicity testing and can be further developed for the automated assays.
format Online
Article
Text
id pubmed-9033994
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90339942022-04-26 A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology Panuška, Petr Nejedlá, Zuzana Smejkal, Jiří Aubrecht, Petr Liegertová, Michaela Štofik, Marcel Havlica, Jaromír Malý, Jan RSC Adv Chemistry Zebrafish (Danio rerio) serves as a popular animal model for in vivo acute toxicity evaluation with the Fish embryo test (FET). Over the last few years there has been an effort to develop various systems for a high-throughput zebrafish embryo cultivation and FET. In this paper, we present a novel design of a millifluidic system fabricated by 3D printing technology and we evaluate its functional properties on Danio rerio embryos cultivation and toxicity testing. The development and the optimization of the millifluidic chip was performed by experimental measurements supported by numerical simulations of mass and momentum transport. The cultivation chip with two inlets and one outlet consisted of two individual channels placed on top of each other and separated by a partition with cultivation chambers. An individual embryo removal functionality, which can be used during the cultivation experiments for selective unloading of any of the cultivated embryos out of the chip, was added to the chip design. This unique property raises the possibility of detailed studies of the selected embryos by additional methods. Long-term (96 hours) perfusion cultivation experiments showed a normal development of zebrafish embryos in the chip. Model toxicity tests were further performed with diluted ethanol as a teratogen. Compared to the FET assays, an increased toxic effect of the ethanol on the embryos cultivated in the chip was observed when the median lethal dose and the percentage of the morphological end-points were evaluated. We conclude that the presented 3D printed chip is suitable for long-term zebrafish embryo cultivations and toxicity testing and can be further developed for the automated assays. The Royal Society of Chemistry 2021-06-08 /pmc/articles/PMC9033994/ /pubmed/35479895 http://dx.doi.org/10.1039/d1ra00846c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Panuška, Petr
Nejedlá, Zuzana
Smejkal, Jiří
Aubrecht, Petr
Liegertová, Michaela
Štofik, Marcel
Havlica, Jaromír
Malý, Jan
A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title_full A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title_fullStr A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title_full_unstemmed A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title_short A millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3D printing technology
title_sort millifluidic chip for cultivation of fish embryos and toxicity testing fabricated by 3d printing technology
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033994/
https://www.ncbi.nlm.nih.gov/pubmed/35479895
http://dx.doi.org/10.1039/d1ra00846c
work_keys_str_mv AT panuskapetr amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT nejedlazuzana amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT smejkaljiri amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT aubrechtpetr amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT liegertovamichaela amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT stofikmarcel amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT havlicajaromir amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT malyjan amillifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT panuskapetr millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT nejedlazuzana millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT smejkaljiri millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT aubrechtpetr millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT liegertovamichaela millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT stofikmarcel millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT havlicajaromir millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology
AT malyjan millifluidicchipforcultivationoffishembryosandtoxicitytestingfabricatedby3dprintingtechnology