Cargando…
Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/ https://www.ncbi.nlm.nih.gov/pubmed/35479345 http://dx.doi.org/10.1039/d1ra01387d |
_version_ | 1784693026924265472 |
---|---|
author | Che Hassan, Hazirah Mohd Said, Suhana Nik Ibrahim, Nik Muhd Jazli Megat Hasnan, Megat Muhammad Ikhsan Mohd Noor, Ikhwan Syafiq Zakaria, Rozalina Mohd Salleh, Mohd Faiz Md. Noor, Nur Linahafizza Abdullah, Norbani |
author_facet | Che Hassan, Hazirah Mohd Said, Suhana Nik Ibrahim, Nik Muhd Jazli Megat Hasnan, Megat Muhammad Ikhsan Mohd Noor, Ikhwan Syafiq Zakaria, Rozalina Mohd Salleh, Mohd Faiz Md. Noor, Nur Linahafizza Abdullah, Norbani |
author_sort | Che Hassan, Hazirah |
collection | PubMed |
description | In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L(16))(2)](BF(4))(2) complex demonstrated a maximum Seebeck coefficient of 8.67 mV K(−1), achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K(−1) during the HS–LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. |
format | Online Article Text |
id | pubmed-9034036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90340362022-04-26 Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials Che Hassan, Hazirah Mohd Said, Suhana Nik Ibrahim, Nik Muhd Jazli Megat Hasnan, Megat Muhammad Ikhsan Mohd Noor, Ikhwan Syafiq Zakaria, Rozalina Mohd Salleh, Mohd Faiz Md. Noor, Nur Linahafizza Abdullah, Norbani RSC Adv Chemistry In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L(16))(2)](BF(4))(2) complex demonstrated a maximum Seebeck coefficient of 8.67 mV K(−1), achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K(−1) during the HS–LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The Royal Society of Chemistry 2021-06-14 /pmc/articles/PMC9034036/ /pubmed/35479345 http://dx.doi.org/10.1039/d1ra01387d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Che Hassan, Hazirah Mohd Said, Suhana Nik Ibrahim, Nik Muhd Jazli Megat Hasnan, Megat Muhammad Ikhsan Mohd Noor, Ikhwan Syafiq Zakaria, Rozalina Mohd Salleh, Mohd Faiz Md. Noor, Nur Linahafizza Abdullah, Norbani Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title | Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title_full | Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title_fullStr | Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title_full_unstemmed | Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title_short | Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials |
title_sort | ultra-high seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of fe(ii) spin-crossover (sco) materials |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/ https://www.ncbi.nlm.nih.gov/pubmed/35479345 http://dx.doi.org/10.1039/d1ra01387d |
work_keys_str_mv | AT chehassanhazirah ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT mohdsaidsuhana ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT nikibrahimnikmuhdjazli ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT megathasnanmegatmuhammadikhsan ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT mohdnoorikhwansyafiq ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT zakariarozalina ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT mohdsallehmohdfaiz ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT mdnoornurlinahafizza ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials AT abdullahnorbani ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials |