Cargando…

Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials

In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Che Hassan, Hazirah, Mohd Said, Suhana, Nik Ibrahim, Nik Muhd Jazli, Megat Hasnan, Megat Muhammad Ikhsan, Mohd Noor, Ikhwan Syafiq, Zakaria, Rozalina, Mohd Salleh, Mohd Faiz, Md. Noor, Nur Linahafizza, Abdullah, Norbani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/
https://www.ncbi.nlm.nih.gov/pubmed/35479345
http://dx.doi.org/10.1039/d1ra01387d
_version_ 1784693026924265472
author Che Hassan, Hazirah
Mohd Said, Suhana
Nik Ibrahim, Nik Muhd Jazli
Megat Hasnan, Megat Muhammad Ikhsan
Mohd Noor, Ikhwan Syafiq
Zakaria, Rozalina
Mohd Salleh, Mohd Faiz
Md. Noor, Nur Linahafizza
Abdullah, Norbani
author_facet Che Hassan, Hazirah
Mohd Said, Suhana
Nik Ibrahim, Nik Muhd Jazli
Megat Hasnan, Megat Muhammad Ikhsan
Mohd Noor, Ikhwan Syafiq
Zakaria, Rozalina
Mohd Salleh, Mohd Faiz
Md. Noor, Nur Linahafizza
Abdullah, Norbani
author_sort Che Hassan, Hazirah
collection PubMed
description In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L(16))(2)](BF(4))(2) complex demonstrated a maximum Seebeck coefficient of 8.67 mV K(−1), achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K(−1) during the HS–LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements.
format Online
Article
Text
id pubmed-9034036
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-90340362022-04-26 Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials Che Hassan, Hazirah Mohd Said, Suhana Nik Ibrahim, Nik Muhd Jazli Megat Hasnan, Megat Muhammad Ikhsan Mohd Noor, Ikhwan Syafiq Zakaria, Rozalina Mohd Salleh, Mohd Faiz Md. Noor, Nur Linahafizza Abdullah, Norbani RSC Adv Chemistry In this work, we present a spin-crossover (SCO) complex molecular formulation [Fe(L(n))(2)](BF(4))(2) in an electrochemical single couple solution. A Seebeck voltage arises when an electrochemical single couple solution is subjected to a temperature difference, resulting in a single couple reaction at either terminal of the electrochemical cell. The ultrahigh Seebeck coefficients were obtained due to a number of molecular optimisation strategies. The [Fe(L(16))(2)](BF(4))(2) complex demonstrated a maximum Seebeck coefficient of 8.67 mV K(−1), achieved through a six-pronged approach to maximise entropy during the transition from low spin (LS) to high spin (HS) through: (i) a change in spin state, (ii) a change in physical liquid crystalline state, (iii) the spin Seebeck effect, (iv) the kosmotropic and chaotropic effect, (v) the fastener effect and (vi) thermal heat absorbance. A reduction of the Seebeck coefficient to 1.68 mV K(−1) during the HS–LS transition at higher temperatures is related to the single spin state transition entropy change. In summary, this paper presents a systematic study to identify the contributing factors in the production of a sensor with an ultrahigh Seebeck coefficient for energy harvesting through the optimisation of its molecular entropy elements. The Royal Society of Chemistry 2021-06-14 /pmc/articles/PMC9034036/ /pubmed/35479345 http://dx.doi.org/10.1039/d1ra01387d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Che Hassan, Hazirah
Mohd Said, Suhana
Nik Ibrahim, Nik Muhd Jazli
Megat Hasnan, Megat Muhammad Ikhsan
Mohd Noor, Ikhwan Syafiq
Zakaria, Rozalina
Mohd Salleh, Mohd Faiz
Md. Noor, Nur Linahafizza
Abdullah, Norbani
Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title_full Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title_fullStr Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title_full_unstemmed Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title_short Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials
title_sort ultra-high seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of fe(ii) spin-crossover (sco) materials
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034036/
https://www.ncbi.nlm.nih.gov/pubmed/35479345
http://dx.doi.org/10.1039/d1ra01387d
work_keys_str_mv AT chehassanhazirah ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT mohdsaidsuhana ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT nikibrahimnikmuhdjazli ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT megathasnanmegatmuhammadikhsan ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT mohdnoorikhwansyafiq ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT zakariarozalina ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT mohdsallehmohdfaiz ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT mdnoornurlinahafizza ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials
AT abdullahnorbani ultrahighseebeckcoefficientofathermalsensorthroughentropicoptimisationofligandlengthoffeiispincrossoverscomaterials