Cargando…
Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound
COVID-19 pandemic has fueled the interest in artificial intelligence tools for quick diagnosis to limit virus spreading. Over 60% of people who are infected complain of a dry cough. Cough and other respiratory sounds were used to build diagnosis models in much recent research. We propose in this wor...
Autores principales: | Hamdi, Skander, Oussalah, Mourad, Moussaoui, Abdelouahab, Saidi, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034264/ https://www.ncbi.nlm.nih.gov/pubmed/35498369 http://dx.doi.org/10.1007/s10844-022-00707-7 |
Ejemplares similares
-
Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model
por: Borré, Andressa, et al.
Publicado: (2023) -
Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function
por: Petmezas, Georgios, et al.
Publicado: (2022) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Attention based automated radiology report generation using CNN and LSTM
por: Sirshar, Mehreen, et al.
Publicado: (2022) -
Language Processing Model Construction and Simulation Based on Hybrid CNN and LSTM
por: Zhang, Shujing
Publicado: (2021)