Cargando…

Oral Immunization of Mice with Cell Extracts from Recombinant Lactococcus lactis Expressing SARS-CoV-2 Spike Protein

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread all over the world and became a pandemic that named coronavirus disease-2019 (COVID-19). At present, several intramuscular vaccines have been successfully developed and mass vaccination has progressed in many countries. The aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Xuan, Biao, Park, Jongbin, Yoo, Jeong Ho, Kim, Eun Bae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034443/
https://www.ncbi.nlm.nih.gov/pubmed/35460453
http://dx.doi.org/10.1007/s00284-022-02866-w
Descripción
Sumario:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread all over the world and became a pandemic that named coronavirus disease-2019 (COVID-19). At present, several intramuscular vaccines have been successfully developed and mass vaccination has progressed in many countries. The aim of the study is to develop and examine an oral vaccine against COVID-19 with recombinant Lactococcus lactis IL1403, a strain of lactic acid bacteria, expressing SARS-CoV-2 spike (S) protein receptor-binding domain (RBD) S1 subunit as an immunizing antigen. PBS or cell extracts from recombinant L. lactis were orally administered into mice (control VS treatment), and formation of antigen-specific antibodies and changes in the gut microbiome were analyzed. Intracellular antigen was detected, but its secretion was not successful. After immunization, antigen-specific serum IgG and fecal IgA levels were 1.5-fold (P = 0.002) and 1.4-fold (P = 0.016) higher in the immunized mice (treatment) than control, respectively. Gut microbiome profiles were clearly separated between the two groups when analyzed for beta diversity with overall similarity. At the genus level, while Coprococcus (P = 0.036) and unclassified genus of Ruminococcaceae (P = 0.037) in treatment were more abundant than control, rc4-4 (P = 0.013) and Stenotrophomonas (P = 0.021) were less abundant. Our results indicate that cell extract containing SARS-CoV-2 antigen can induce mice to produce antigen-specific antibodies without overall changes in the gut microbiome. This strategy may be useful for the development of other oral viral vaccines. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00284-022-02866-w.